2个回答
展开全部
a(n) = 1/2^n + 1/[n(n+1)] = (1/2)(1/2)^(n-1) + 1/n - 1/(n+1),
s(n) = a(1) + a(2) + ... + a(n-1) + a(n)
= (1/2)[1 + (1/2) + ... + (1/2)^(n-2) + (1/2)^(n-1)] + 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/(n-1) - 1/n + 1/n - 1/(n+1)
= (1/2)[1 - (1/2)^n]/(1-1/2) + 1/1 - 1/(n+1)
= 1 - (1/2)^n + 1 - 1/(n+1).
lim_{n->无穷}s(n) = 2
答案:B
s(n) = a(1) + a(2) + ... + a(n-1) + a(n)
= (1/2)[1 + (1/2) + ... + (1/2)^(n-2) + (1/2)^(n-1)] + 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/(n-1) - 1/n + 1/n - 1/(n+1)
= (1/2)[1 - (1/2)^n]/(1-1/2) + 1/1 - 1/(n+1)
= 1 - (1/2)^n + 1 - 1/(n+1).
lim_{n->无穷}s(n) = 2
答案:B
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询