已知抛物线y2=4x,过点P(1,1)能否作一条直线与抛物线交于A,B两点,且P为线段AB 的中点?若能.求出直
已知抛物线y2=4x,过点P(1,1)能否作一条直线与抛物线交于A,B两点,且P为线段AB的中点?若能.求出直线方程,若不能说出理由....
已知抛物线y2=4x,过点P(1,1)能否作一条直线与抛物线交于A,B两点,且P为线段AB 的中点?若能.求出直线方程,若不能说出理由.
展开
1个回答
展开全部
法一:由题意可设直线AB的方程为x-1=k(y-1),A(x1,y1),B(x2,y2),
联立方程
可得y2-4ky+4(k-1)=0
则△=16(k2-k+1)>0,y1+y2=4k
由中点坐标公式可得,
=2k=1
∴k=
,直线AB的方程为x?1=
(y?1)即2x-y-1=0
法二:设A(x1,y1),B(x2,y2),
由中点坐标公式可得,x1+x2=2
则
两式相减可得(y1-y2)(y1+y2)=4(x1-x2)
∴KAB=
=
=2
∴直线AB的方程为y-1=2(x-1)即2x-y-1=0
联立方程
|
则△=16(k2-k+1)>0,y1+y2=4k
由中点坐标公式可得,
y1+y2 |
2 |
∴k=
1 |
2 |
1 |
2 |
法二:设A(x1,y1),B(x2,y2),
由中点坐标公式可得,x1+x2=2
则
|
两式相减可得(y1-y2)(y1+y2)=4(x1-x2)
∴KAB=
y2?y1 |
x2?x1 |
4 |
x1+x2 |
∴直线AB的方程为y-1=2(x-1)即2x-y-1=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询