线性代数 设A为正交阵,且detA=-1.证明-1是A的特征值
A正交,则A的特征值的模是1又detA=-1=所有特征值的乘积,共轭复特征值成对出现所以必有特征值是-1。
方阵A为正交阵的充分必要条件是A的行向量或列向量是标准正交向量。
正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
扩展资料:
方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基。
在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。
如果不管维度,总是有可能把正交矩阵按纯旋转与否来分类的,但是对于3×3矩阵和更高维度矩阵要比反射复杂多了。
例如,表示通过原点的反演和关于z轴的旋转反演(逆时针旋转90°后针对x-y平面反射,或逆时针旋转270°后对原点反演)。旋转也变得更加复杂;它们不再由一个角来刻画,并可能影响多于一个平面子空间。
参考资料来源:百度百科——正交矩阵
2023-06-12 广告
等式左边乘于A的转置A^T,右边乘于α ^T,得α(α ^T) = λ(A^T)α(α ^T),取行列式得:
|α(α ^T)| = λ |(A^T)| |α(α ^T)|,又|A^T|=detA=-1,故λ=-1
即:题干条件下,A的特征值有且仅有-1
正交矩阵的特征值只能是1或者-1;
矩阵A的行列式值|A|是A的特征值的乘积。
根据以上两点正交矩阵的特征值的乘积是-1,所以不能全部都是1,从而-1是A的特征值。