在△ABC中,CA=CB,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如图所示放置,
在△ABC中,CA=CB,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如图所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始...
在△ABC中,CA=CB,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如图所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)当PN∥BC时,∠ACP=______度;(2)当α=15°时,求∠ADN的度数;(3)在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出夹角α的大小.
展开
1个回答
展开全部
(1)∵PN∥BC,∠MPN=30°,
∴∠BCP=∠MPN=30°,
∵∠ACB=120°,
∴∠ACP=∠ACB-∠BCP=90°,
故答案为:90.
(2)∵∠ACB=120°,∠PCB=15°,
∴∠PCD=∠ACB-∠PCB=105°,
∴∠PDC=180°-∠PCD-∠MPN=180°-105°-30°=45°,
∴∠ADN=∠PDC=45°.
(3)△PCD的形状可以是等腰三角形,
∠PCA=120°-α,∠CPD=30°,
①当PC=PD时,△PCD是等腰三角形,
∠PCD=
(180°-∠MPN)=
(180°-30°)=75°,
即120°-α=75°,
解得:α=45°;
②当PD=CD时,△PCD是等腰三角形,
∠PCD=∠CPD=30°,
即120°-α=30°,
解得:α=90°;
③当PC=CD时,△PCD是等腰三角形,
∠PCD=180°-2×30°=120°,
即120°-α=120°,
解得:α=0°,
此时点P与点B重合,点D和A重合.
综合上述:当α=45°或90°或0°时,△PCD是等腰三角形,
即α的大小是45°或90°或0°.
∴∠BCP=∠MPN=30°,
∵∠ACB=120°,
∴∠ACP=∠ACB-∠BCP=90°,
故答案为:90.
(2)∵∠ACB=120°,∠PCB=15°,
∴∠PCD=∠ACB-∠PCB=105°,
∴∠PDC=180°-∠PCD-∠MPN=180°-105°-30°=45°,
∴∠ADN=∠PDC=45°.
(3)△PCD的形状可以是等腰三角形,
∠PCA=120°-α,∠CPD=30°,
①当PC=PD时,△PCD是等腰三角形,
∠PCD=
1 |
2 |
1 |
2 |
即120°-α=75°,
解得:α=45°;
②当PD=CD时,△PCD是等腰三角形,
∠PCD=∠CPD=30°,
即120°-α=30°,
解得:α=90°;
③当PC=CD时,△PCD是等腰三角形,
∠PCD=180°-2×30°=120°,
即120°-α=120°,
解得:α=0°,
此时点P与点B重合,点D和A重合.
综合上述:当α=45°或90°或0°时,△PCD是等腰三角形,
即α的大小是45°或90°或0°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询