圆的摆线参数的取值范围如何得出来的?是0到正无穷么。。圆的摆线的普通方程是什么? 10

 我来答
dennis_zyp
推荐于2017-11-27 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:1.9亿
展开全部
圆沿一条直线滚动,则圆上一固定点所经过的轨迹称为摆线.它的参数方程为:
x=r(t-sint)
y=r(1-cost)
r为圆的半径, t是圆的半径所经过的角度(滚动角),当t由0变到2π时,动点就画出了摆线的一支,称为一拱。t每变化2π,就重复出现一个拱。t的取值是0到正无穷。
如果非要去掉参数t,化成普通方程,可以如下:
x/r-t=-sint
y/r-1=-cost
平方相加得:(x/r-t)²+(y/r-1)²=1, 解得:t=x/r±√(2y/r-y²/r²)
再代入y=r(1-cost)就得到了关于x, y的方程式了。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式