7个回答
展开全部
高一物理知识点总结
一、质点的运动
(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
动能保持不变,向心力不做功,但动量不断改变。
一、质点的运动
(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
动能保持不变,向心力不做功,但动量不断改变。
展开全部
物理(必修一)——知识考点归纳
第一章.运动的描述
考点一:时刻与时间间隔的关系
时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如:
第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。
区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。
考点二:路程与位移的关系
位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。
考点三:速度与速率的关系
速度 速率
物理意义 描述物体运动快慢和方向的物理量,是矢
量 描述物体运动快慢的物理量,是
标量
分类 平均速度、瞬时速度 速率、平均速率(=路程/时间)
决定因素 平均速度由位移和时间决定 由瞬时速度的大小决定
方向 平均速度方向与位移方向相同;瞬时速度
方向为该质点的运动方向 无方向
联系 它们的单位相同(m/s),瞬时速度的大小等于速率
考点四:速度、加速度与速度变化量的关系
速度 加速度 速度变化量
意义 描述物体运动快慢和方向的物理量 描述物体速度变化快
慢和方向的物理量 描述物体速度变化大
小程度的物理量,是
一过程量
定义式
单位 m/s m/s2 m/s
决定因素 v的大小由v0、a、t
决定 a不是由v、△v、△t
决定的,而是由F和
m决定。 由v与v0决定,
而且 ,也
由a与△t决定
方向 与位移x或△x同向,
即物体运动的方向 与△v方向一致 由 或
决定方向
大小 ① 位移与时间的比值
② 位移对时间的变化
率
③ x-t图象中图线
上点的切线斜率的大
小值 ① 速度对时间的变
化率
② 速度改变量与所
用时间的比值
③ v—t图象中图线
上点的切线斜率的大
小值
考点五:运动图象的理解及应用
由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。
1. 理解图象的含义
(1) x-t图象是描述位移随时间的变化规律
(2) v—t图象是描述速度随时间的变化规律
2. 明确图象斜率的含义
(1) x-t图象中,图线的斜率表示速度
(2) v—t图象中,图线的斜率表示加速度
第二章.匀变速直线运动的研究
考点一:匀变速直线运动的基本公式和推理
1. 基本公式
(1) 速度—时间关系式:
(2) 位移—时间关系式:
(3) 位移—速度关系式:
三个公式中的物理量只要知道任意三个,就可求出其余两个。
利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同,
解题时要有正方向的规定。
2. 常用推论
(1) 平均速度公式:
(2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度:
(3) 一段位移的中间位置的瞬时速度:
(4) 任意两个连续相等的时间间隔(T)内位移之差为常数(逐差相等):
考点二:对运动图象的理解及应用
1. 研究运动图象
(1) 从图象识别物体的运动性质
(2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义
(3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义
(4) 能认识图象与坐标轴所围面积的物理意义
(5) 能说明图象上任一点的物理意义
2. x-t图象和v—t图象的比较
如图所示是形状一样的图线在x-t图象和v—t图象中,
x-t图象 v—t图象
①表示物体做匀速直线运动(斜率表示速度) ①表示物体做匀加速直线运动(斜率表示加速度)
②表示物体静止 ②表示物体做匀速直线运动
③表示物体静止 ③表示物体静止
④ 表示物体向反方向做匀速直线运动;初
位移为x0 ④ 表示物体做匀减速直线运动;初速度为
v0
⑤ 交点的纵坐标表示三个运动的支点相遇时
的位移 ⑤ 交点的纵坐标表示三个运动质点的共同速度
⑥t1时间内物体位移为x1 ⑥ t1时刻物体速度为v1(图中阴影部分面积表
示质点在0~t1时间内的位移)
考点三:追及和相遇问题
1.“追及”、“相遇”的特征
“追及”的主要条件是:两个物体在追赶过程中处在同一位置。
两物体恰能“相遇”的临界条件是两物体处在同一位置时,两物体的速度恰好相同。
2.解“追及”、“相遇”问题的思路
(1)根据对两物体的运动过程分析,画出物体运动示意图
(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中
(3)由运动示意图找出两物体位移间的关联方程
(4)联立方程求解
3. 分析“追及”、“相遇”问题时应注意的问题
(1) 抓住一个条件:是两物体的速度满足的临界条件。如两物体距离最大、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。
(2) 若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动
4. 解决“追及”、“相遇”问题的方法
(1) 数学方法:列出方程,利用二次函数求极值的方法求解
(2) 物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解
考点四:纸带问题的分析
1. 判断物体的运动性质
(1) 根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。
(2) 由匀变速直线运动的推论 ,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。
2. 求加速度
(1) 逐差法
(2)v—t图象法
利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a.
第三章 相互作用
考点一:关于弹力的问题
1. 弹力的产出
条件:(1)物体间是否直接接触
(2) 接触处是否有相互挤压或拉伸
2.弹力方向的判断
弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
(1) 压力的方向总是垂直于支持面指向被压的物体(受力物体)。
(2) 支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。
(3) 绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。
补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。
3. 弹力的大小
(1) 弹簧的弹力满足胡克定律: 。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。
(2) 弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。
考点二:关于摩擦力的问题
1. 对摩擦力认识的四个“不一定”
(1) 摩擦力不一定是阻力
(2) 静摩擦力不一定比滑动摩擦力小
(3) 静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向
(4) 摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力
2. 静摩擦力用二力平衡来求解,滑动摩擦力用公式 来求解
3. 静摩擦力存在及其方向的判断
存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。
方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。
考点三:物体的受力分析
1.物体受力分析的方法
(1) 方法
(2) 选择
2.受力分析的顺序
先重力,再接触力,最后分析其他外力
3.受力分析时应注意的问题
(1) 分析物体受力时,只分析周围物体对研究对象所施加的力
(2) 受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力
(3) 如果一个力的方向难以确定,可用假设法分析
(4) 物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定
(5) 受力分析外部作用看整体,互相作用要隔离
考点四:正交分解法在力的合成与分解中的应用
1. 正交分解时建立坐标轴的原则
(1) 以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上
(2) 一般使所要求的力落在坐标轴上
第四章 牛顿运动定律
考点一:对牛顿运动定律的理解
1. 对牛顿第一定律的理解
(1) 揭示了物体不受外力作用时的运动规律
(2) 牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关
(3) 肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因
(4) 牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例
(5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律
2. 对牛顿第二定律的理解
(1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性
(2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态
(3) 加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度
3. 对牛顿第三定律的理解
(1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力
(2) 指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同
考点二:应用牛顿运动定律时常用的方法、技巧
1. 理想实验法
2. 控制变量法
3. 整体与隔离法
4. 图解法
5. 正交分解法
6. 关于临界问题
处理的基本方法是:
根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件(更多类型见错题本)
考点三:应用牛顿运动定律解决的几个典型问题
1. 力、加速度、速度的关系
(1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系 ,合力只要不为零,无论速度是多大,加速度都不为零
(2) 合力与速度无必然联系,只有速度变化才与合力有必然联系
(3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小
2. 关于轻绳、轻杆、轻弹簧的问题
(1) 轻绳
① 拉力的方向一定沿绳指向绳收缩的方向
② 同一根绳上各处的拉力大小都相等
③ 认为受力形变极微,看做不可伸长
④ 弹力可做瞬时变化
(2) 轻杆
① 作用力方向不一定沿杆的方向
② 各处作用力的大小相等
③ 轻杆不能伸长或压缩
④ 轻杆受到的弹力方式有:拉力、压力
⑤ 弹力变化所需时间极短,可忽略不计
(3) 轻弹簧
① 各处的弹力大小相等,方向与弹簧形变的方向相反
② 弹力的大小遵循 的关系
③ 弹簧的弹力不能发生突变
3. 关于超重和失重的问题
(1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力
(2) 物体超重或失重与速度方向和大小无关。根据加速度的方向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重
(3) 物体出于完全失重状态时,物体与重力有关的现象全部消失:
① 与重力有关的一些仪器如天平、台秤等不能使用
② 竖直上抛的物体再也回不到地面
③ 杯口向下时,杯中的水也不流出
第一章.运动的描述
考点一:时刻与时间间隔的关系
时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如:
第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。
区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。
考点二:路程与位移的关系
位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。
考点三:速度与速率的关系
速度 速率
物理意义 描述物体运动快慢和方向的物理量,是矢
量 描述物体运动快慢的物理量,是
标量
分类 平均速度、瞬时速度 速率、平均速率(=路程/时间)
决定因素 平均速度由位移和时间决定 由瞬时速度的大小决定
方向 平均速度方向与位移方向相同;瞬时速度
方向为该质点的运动方向 无方向
联系 它们的单位相同(m/s),瞬时速度的大小等于速率
考点四:速度、加速度与速度变化量的关系
速度 加速度 速度变化量
意义 描述物体运动快慢和方向的物理量 描述物体速度变化快
慢和方向的物理量 描述物体速度变化大
小程度的物理量,是
一过程量
定义式
单位 m/s m/s2 m/s
决定因素 v的大小由v0、a、t
决定 a不是由v、△v、△t
决定的,而是由F和
m决定。 由v与v0决定,
而且 ,也
由a与△t决定
方向 与位移x或△x同向,
即物体运动的方向 与△v方向一致 由 或
决定方向
大小 ① 位移与时间的比值
② 位移对时间的变化
率
③ x-t图象中图线
上点的切线斜率的大
小值 ① 速度对时间的变
化率
② 速度改变量与所
用时间的比值
③ v—t图象中图线
上点的切线斜率的大
小值
考点五:运动图象的理解及应用
由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。
1. 理解图象的含义
(1) x-t图象是描述位移随时间的变化规律
(2) v—t图象是描述速度随时间的变化规律
2. 明确图象斜率的含义
(1) x-t图象中,图线的斜率表示速度
(2) v—t图象中,图线的斜率表示加速度
第二章.匀变速直线运动的研究
考点一:匀变速直线运动的基本公式和推理
1. 基本公式
(1) 速度—时间关系式:
(2) 位移—时间关系式:
(3) 位移—速度关系式:
三个公式中的物理量只要知道任意三个,就可求出其余两个。
利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同,
解题时要有正方向的规定。
2. 常用推论
(1) 平均速度公式:
(2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度:
(3) 一段位移的中间位置的瞬时速度:
(4) 任意两个连续相等的时间间隔(T)内位移之差为常数(逐差相等):
考点二:对运动图象的理解及应用
1. 研究运动图象
(1) 从图象识别物体的运动性质
(2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义
(3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义
(4) 能认识图象与坐标轴所围面积的物理意义
(5) 能说明图象上任一点的物理意义
2. x-t图象和v—t图象的比较
如图所示是形状一样的图线在x-t图象和v—t图象中,
x-t图象 v—t图象
①表示物体做匀速直线运动(斜率表示速度) ①表示物体做匀加速直线运动(斜率表示加速度)
②表示物体静止 ②表示物体做匀速直线运动
③表示物体静止 ③表示物体静止
④ 表示物体向反方向做匀速直线运动;初
位移为x0 ④ 表示物体做匀减速直线运动;初速度为
v0
⑤ 交点的纵坐标表示三个运动的支点相遇时
的位移 ⑤ 交点的纵坐标表示三个运动质点的共同速度
⑥t1时间内物体位移为x1 ⑥ t1时刻物体速度为v1(图中阴影部分面积表
示质点在0~t1时间内的位移)
考点三:追及和相遇问题
1.“追及”、“相遇”的特征
“追及”的主要条件是:两个物体在追赶过程中处在同一位置。
两物体恰能“相遇”的临界条件是两物体处在同一位置时,两物体的速度恰好相同。
2.解“追及”、“相遇”问题的思路
(1)根据对两物体的运动过程分析,画出物体运动示意图
(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中
(3)由运动示意图找出两物体位移间的关联方程
(4)联立方程求解
3. 分析“追及”、“相遇”问题时应注意的问题
(1) 抓住一个条件:是两物体的速度满足的临界条件。如两物体距离最大、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。
(2) 若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动
4. 解决“追及”、“相遇”问题的方法
(1) 数学方法:列出方程,利用二次函数求极值的方法求解
(2) 物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解
考点四:纸带问题的分析
1. 判断物体的运动性质
(1) 根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。
(2) 由匀变速直线运动的推论 ,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。
2. 求加速度
(1) 逐差法
(2)v—t图象法
利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a.
第三章 相互作用
考点一:关于弹力的问题
1. 弹力的产出
条件:(1)物体间是否直接接触
(2) 接触处是否有相互挤压或拉伸
2.弹力方向的判断
弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
(1) 压力的方向总是垂直于支持面指向被压的物体(受力物体)。
(2) 支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。
(3) 绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。
补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。
3. 弹力的大小
(1) 弹簧的弹力满足胡克定律: 。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。
(2) 弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。
考点二:关于摩擦力的问题
1. 对摩擦力认识的四个“不一定”
(1) 摩擦力不一定是阻力
(2) 静摩擦力不一定比滑动摩擦力小
(3) 静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向
(4) 摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力
2. 静摩擦力用二力平衡来求解,滑动摩擦力用公式 来求解
3. 静摩擦力存在及其方向的判断
存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。
方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。
考点三:物体的受力分析
1.物体受力分析的方法
(1) 方法
(2) 选择
2.受力分析的顺序
先重力,再接触力,最后分析其他外力
3.受力分析时应注意的问题
(1) 分析物体受力时,只分析周围物体对研究对象所施加的力
(2) 受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力
(3) 如果一个力的方向难以确定,可用假设法分析
(4) 物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定
(5) 受力分析外部作用看整体,互相作用要隔离
考点四:正交分解法在力的合成与分解中的应用
1. 正交分解时建立坐标轴的原则
(1) 以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上
(2) 一般使所要求的力落在坐标轴上
第四章 牛顿运动定律
考点一:对牛顿运动定律的理解
1. 对牛顿第一定律的理解
(1) 揭示了物体不受外力作用时的运动规律
(2) 牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关
(3) 肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因
(4) 牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例
(5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律
2. 对牛顿第二定律的理解
(1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性
(2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态
(3) 加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度
3. 对牛顿第三定律的理解
(1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力
(2) 指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同
考点二:应用牛顿运动定律时常用的方法、技巧
1. 理想实验法
2. 控制变量法
3. 整体与隔离法
4. 图解法
5. 正交分解法
6. 关于临界问题
处理的基本方法是:
根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件(更多类型见错题本)
考点三:应用牛顿运动定律解决的几个典型问题
1. 力、加速度、速度的关系
(1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系 ,合力只要不为零,无论速度是多大,加速度都不为零
(2) 合力与速度无必然联系,只有速度变化才与合力有必然联系
(3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小
2. 关于轻绳、轻杆、轻弹簧的问题
(1) 轻绳
① 拉力的方向一定沿绳指向绳收缩的方向
② 同一根绳上各处的拉力大小都相等
③ 认为受力形变极微,看做不可伸长
④ 弹力可做瞬时变化
(2) 轻杆
① 作用力方向不一定沿杆的方向
② 各处作用力的大小相等
③ 轻杆不能伸长或压缩
④ 轻杆受到的弹力方式有:拉力、压力
⑤ 弹力变化所需时间极短,可忽略不计
(3) 轻弹簧
① 各处的弹力大小相等,方向与弹簧形变的方向相反
② 弹力的大小遵循 的关系
③ 弹簧的弹力不能发生突变
3. 关于超重和失重的问题
(1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力
(2) 物体超重或失重与速度方向和大小无关。根据加速度的方向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重
(3) 物体出于完全失重状态时,物体与重力有关的现象全部消失:
① 与重力有关的一些仪器如天平、台秤等不能使用
② 竖直上抛的物体再也回不到地面
③ 杯口向下时,杯中的水也不流出
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一章 力
定义:力是物体之间的相互作用。
理解要点:
(1)力具有物质性:力不能离开物体而存在。
说明:①对某一物体而言,可能有一个或多个施力物体。
②并非先有施力物体,后有受力物体
(2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。
说明:①相互作用的物体可以直接接触,也可以不接触。
②力的大小用测力计测量。
(3)力具有矢量性:力不仅有大小,也有方向。
(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。
(5)力的种类:
①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。
②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。
说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。
重力
定义:由于受到地球的吸引而使物体受到的力叫重力。
说明:①地球附近的物体都受到重力作用。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。
③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。
(1)重力的大小:G=mg
说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。
③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
(2) 重力的方向:竖直向下(即垂直于水平面)
说明:①在两极与在赤道上的物体,所受重力的方向指向地心。
②重力的方向不受其它作用力的影响,与运动状态也没有关系。
(3)重心:物体所受重力的作用点。
重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。
③薄板形物体的重心,可用悬挂法确定。
说明:①物体的重心可在物体上,也可在物体外。
②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。
弹力
(1) 形变:物体的形状或体积的改变,叫做形变。
说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。
②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。
(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。
说明:①弹力产生的条件:接触;弹性形变。
②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。
③弹力必须产生在同时形变的两物体间。
④弹力与弹性形变同时产生同时消失。
(3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。
几种典型的产生弹力的理想模型:
① 轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。
② 点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。
③ 平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。
(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。
摩擦力
(1) 滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。
说明:①摩擦力的产生是由于物体表面不光滑造成的。
②摩擦力具有相互性。
ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体发生形变;C.两物体发生了相对滑动;D.接触面不光滑。
ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。
说明:①“与相对运动方向相反”不能等同于“与运动方向相反”
②滑动摩擦力可能起动力作用,也可能起阻力作用。
ⅲ滑动摩擦力的大小:F=μFN
说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。
②μ与接触面的材料、接触面的粗糙程度有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。
ⅴ.滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。
(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。
说明:静摩擦力的作用具有相互性。
ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光滑;C.两物体有形变;D.两物体有相对运动趋势。
ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。
说明:①运动的物体可以受到静摩擦力的作用。
②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。
③静摩擦力可以是阻力也可以是动力。
ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0<F≤Fm,其中Fm为两个物体间的最大静摩擦力。静摩擦力的大小应根据实际运动情况,利用平衡条件或牛顿运动定律进行计算。
说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。
②最大静摩擦力大小决定于正压力与最大静摩擦因数效果:总是阻碍物体间的相对运动的趋势。
受力分析的程序是:
1. 根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。
2. 把研究对象从周围的环境中隔离出来,按照先外力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。
3. 对物体受力分析时,应注意一下几点:
(1)不要把研究对象所受的力与它对其它物体的作用力相混淆。
(2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。
(3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。
力的合成
求几个共点力的合力,叫做力的合成。
(1) 力是矢量,其合成与分解都遵循平行四边形定则。
(2) 一条直线上两力合成,在规定正方向后,可利用代数运算。
(3) 互成角度共点力互成的分析
①两个力合力的取值范围是|F1-F2|≤F≤F1+F2
②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。
③同时作用在同一物体上的共点力才能合成(同时性和同体性)。
④合力可能比分力大,也可能比分力小,也可能等于某一个分力。
采纳吧~
定义:力是物体之间的相互作用。
理解要点:
(1)力具有物质性:力不能离开物体而存在。
说明:①对某一物体而言,可能有一个或多个施力物体。
②并非先有施力物体,后有受力物体
(2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。
说明:①相互作用的物体可以直接接触,也可以不接触。
②力的大小用测力计测量。
(3)力具有矢量性:力不仅有大小,也有方向。
(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。
(5)力的种类:
①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。
②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。
说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。
重力
定义:由于受到地球的吸引而使物体受到的力叫重力。
说明:①地球附近的物体都受到重力作用。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。
③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。
(1)重力的大小:G=mg
说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。
③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
(2) 重力的方向:竖直向下(即垂直于水平面)
说明:①在两极与在赤道上的物体,所受重力的方向指向地心。
②重力的方向不受其它作用力的影响,与运动状态也没有关系。
(3)重心:物体所受重力的作用点。
重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。
③薄板形物体的重心,可用悬挂法确定。
说明:①物体的重心可在物体上,也可在物体外。
②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。
弹力
(1) 形变:物体的形状或体积的改变,叫做形变。
说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。
②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。
(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。
说明:①弹力产生的条件:接触;弹性形变。
②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。
③弹力必须产生在同时形变的两物体间。
④弹力与弹性形变同时产生同时消失。
(3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。
几种典型的产生弹力的理想模型:
① 轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。
② 点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。
③ 平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。
(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。
摩擦力
(1) 滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。
说明:①摩擦力的产生是由于物体表面不光滑造成的。
②摩擦力具有相互性。
ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体发生形变;C.两物体发生了相对滑动;D.接触面不光滑。
ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。
说明:①“与相对运动方向相反”不能等同于“与运动方向相反”
②滑动摩擦力可能起动力作用,也可能起阻力作用。
ⅲ滑动摩擦力的大小:F=μFN
说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。
②μ与接触面的材料、接触面的粗糙程度有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。
ⅴ.滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。
(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。
说明:静摩擦力的作用具有相互性。
ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光滑;C.两物体有形变;D.两物体有相对运动趋势。
ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。
说明:①运动的物体可以受到静摩擦力的作用。
②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。
③静摩擦力可以是阻力也可以是动力。
ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0<F≤Fm,其中Fm为两个物体间的最大静摩擦力。静摩擦力的大小应根据实际运动情况,利用平衡条件或牛顿运动定律进行计算。
说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。
②最大静摩擦力大小决定于正压力与最大静摩擦因数效果:总是阻碍物体间的相对运动的趋势。
受力分析的程序是:
1. 根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。
2. 把研究对象从周围的环境中隔离出来,按照先外力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。
3. 对物体受力分析时,应注意一下几点:
(1)不要把研究对象所受的力与它对其它物体的作用力相混淆。
(2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。
(3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。
力的合成
求几个共点力的合力,叫做力的合成。
(1) 力是矢量,其合成与分解都遵循平行四边形定则。
(2) 一条直线上两力合成,在规定正方向后,可利用代数运算。
(3) 互成角度共点力互成的分析
①两个力合力的取值范围是|F1-F2|≤F≤F1+F2
②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。
③同时作用在同一物体上的共点力才能合成(同时性和同体性)。
④合力可能比分力大,也可能比分力小,也可能等于某一个分力。
采纳吧~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一二楼的:http://zhidao.baidu.com/question/83662783.html?fr=ala0
四楼的:http://hi.baidu.com/xujianmin123/blog/item/9f0906f4abf47767ddc47459.html
高一主要讲力和运动,前面的楼上的都复制得干干净净了...帮他们总结起来
主要课本上的知识点你从这儿看,包括定义等等
http://wenku.baidu.com/view/3343866a561252d380eb6eaf.html
速度方面的知识点:高中物理‘加速度’,一般都是指‘匀加速度’,即,加速度是一个常量
1、加速度a与速度V的关系符合下式:V==at,t为时间变量,
我们有
a==V/t
表明,加速度a,就是速度V在单位时间内的平均变化率。
2、V==at是一个直线方程,它相当于数学上的y=kx(V相当于y,t相当于x,a相当于k)
数学知识指出,k是特定直线y=kx的斜率,
直线斜率有如下性质:
(1)不同直线(彼此不平行)的斜率,数值不等
(2)同一直线上斜率的数值,处处相等(与y和x的数值无关)
(3)直线斜率的数值,可以通过y和x的数值来求算:
k==y/x
(4)虽然k==y/x,但是,y==0,x==0,k不为零。
仿此,
(1)不同运动的加速度,数值不等
(2)同一运动的加速度数值,处处相等(与V和t的数值无关)
(3)运动的加速度数值,可以通过V和t的数值来求算:
==V/t
(4)虽然a==V/t,但是V==0(由静止开始云动),t==0,但a不为零。
.变加速运动中的物体加速度在减小而速度却在增大,以及加速度不为零的物体速度大小却可能不变.(这两句怎么理解啊??举几个例子?
变加速运动中加速度减小速度当然是增大了,只有加速度的方向与速度方向一致那么速度就是增加的,与加速度大小没有关系,例如从一个半圆形轨道上滑下的一个木块,它沿水平方向的加速度是减小的,但速度是增加的。
加速度在与速度方向在同一条直线上时才改变速度的大小,
有加速度那么速度就得改变,如果想让速度大小不变,那么就得让它的方向改变,如匀速圆周运动,加速度的大小不变且不为0,速度方向不断改变但大小不变。
刹车方面应用题:汽车以15米每秒的速度行驶,司机发现前方有危险,在0.8s之后才能作出反应,马上制动,这个时间称为反应时间.若汽车刹车时能产生最大加速度为5米每二次方秒,从汽车司机发现前方有危险马上制动刹车到汽车完全停下来,汽车所通过的距离叫刹车距离.问该汽车的刹车距离为多少?(最好附些过程,谢谢)
15米/秒 加速度是5米/二次方秒 那么停止需要3秒钟
3秒通过的路程是s=15*3-1/2*5*3^2=22.5
反应时间是0.8秒 s=0.8*15=12
总的距离就是22.5+12=34.5
原先“直线运动”是放在“力”之后的,在力这一章先讲矢量及其算法,然后是利用矢量运算法则学习力的计算。现在倒过来了。建议你还是先学一下这这章内容。
要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物体运动前后位置的变化,即由开始位置指向结束位置的矢量。
速度就是物体位移(物体位置的变化量)与物体运动所用时间的比值,如果物体不是匀速运动(叫变速运动),速度就又有瞬时速度和平均速度之分,平均速度就是作变速运动的物体在某段时间内(或某段位移上),位移与时间的比值;瞬时速度就是物体在某一点或某一时刻的速度。
加速度就是物体速度的变化量与物体速度变化所用时间的比值,如果物体不是匀加速运动(叫变加速运动),加速度就又有瞬时加速度和平均加速度之分,平均加速度就是作变速运动的物体在某段时间内(或某段位移上),速度变化量与时间的比值;瞬时加速度就是物体在某一点或某一时刻的加速度。
四楼的:http://hi.baidu.com/xujianmin123/blog/item/9f0906f4abf47767ddc47459.html
高一主要讲力和运动,前面的楼上的都复制得干干净净了...帮他们总结起来
主要课本上的知识点你从这儿看,包括定义等等
http://wenku.baidu.com/view/3343866a561252d380eb6eaf.html
速度方面的知识点:高中物理‘加速度’,一般都是指‘匀加速度’,即,加速度是一个常量
1、加速度a与速度V的关系符合下式:V==at,t为时间变量,
我们有
a==V/t
表明,加速度a,就是速度V在单位时间内的平均变化率。
2、V==at是一个直线方程,它相当于数学上的y=kx(V相当于y,t相当于x,a相当于k)
数学知识指出,k是特定直线y=kx的斜率,
直线斜率有如下性质:
(1)不同直线(彼此不平行)的斜率,数值不等
(2)同一直线上斜率的数值,处处相等(与y和x的数值无关)
(3)直线斜率的数值,可以通过y和x的数值来求算:
k==y/x
(4)虽然k==y/x,但是,y==0,x==0,k不为零。
仿此,
(1)不同运动的加速度,数值不等
(2)同一运动的加速度数值,处处相等(与V和t的数值无关)
(3)运动的加速度数值,可以通过V和t的数值来求算:
==V/t
(4)虽然a==V/t,但是V==0(由静止开始云动),t==0,但a不为零。
.变加速运动中的物体加速度在减小而速度却在增大,以及加速度不为零的物体速度大小却可能不变.(这两句怎么理解啊??举几个例子?
变加速运动中加速度减小速度当然是增大了,只有加速度的方向与速度方向一致那么速度就是增加的,与加速度大小没有关系,例如从一个半圆形轨道上滑下的一个木块,它沿水平方向的加速度是减小的,但速度是增加的。
加速度在与速度方向在同一条直线上时才改变速度的大小,
有加速度那么速度就得改变,如果想让速度大小不变,那么就得让它的方向改变,如匀速圆周运动,加速度的大小不变且不为0,速度方向不断改变但大小不变。
刹车方面应用题:汽车以15米每秒的速度行驶,司机发现前方有危险,在0.8s之后才能作出反应,马上制动,这个时间称为反应时间.若汽车刹车时能产生最大加速度为5米每二次方秒,从汽车司机发现前方有危险马上制动刹车到汽车完全停下来,汽车所通过的距离叫刹车距离.问该汽车的刹车距离为多少?(最好附些过程,谢谢)
15米/秒 加速度是5米/二次方秒 那么停止需要3秒钟
3秒通过的路程是s=15*3-1/2*5*3^2=22.5
反应时间是0.8秒 s=0.8*15=12
总的距离就是22.5+12=34.5
原先“直线运动”是放在“力”之后的,在力这一章先讲矢量及其算法,然后是利用矢量运算法则学习力的计算。现在倒过来了。建议你还是先学一下这这章内容。
要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物体运动前后位置的变化,即由开始位置指向结束位置的矢量。
速度就是物体位移(物体位置的变化量)与物体运动所用时间的比值,如果物体不是匀速运动(叫变速运动),速度就又有瞬时速度和平均速度之分,平均速度就是作变速运动的物体在某段时间内(或某段位移上),位移与时间的比值;瞬时速度就是物体在某一点或某一时刻的速度。
加速度就是物体速度的变化量与物体速度变化所用时间的比值,如果物体不是匀加速运动(叫变加速运动),加速度就又有瞬时加速度和平均加速度之分,平均加速度就是作变速运动的物体在某段时间内(或某段位移上),速度变化量与时间的比值;瞬时加速度就是物体在某一点或某一时刻的加速度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |