已知函数f(x)=ax3+cx+d (a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.(1)求函数f(x)的解析

已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.(1)求函数f(x)的解析式.(2)求函数f(x)的单调区间和极大值.(3)... 已知函数f(x)=ax3+cx+d (a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.(1)求函数f(x)的解析式.(2)求函数f(x)的单调区间和极大值.(3)证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立. 展开
 我来答
小小美小圈940
2014-12-06 · TA获得超过122个赞
知道答主
回答量:131
采纳率:0%
帮助的人:184万
展开全部
(1)∵f(x)是R上的奇函数,
∴f(-x)=-f(x),
即-ax3-cx+d=-ax3-cx-d,
∴d=-d,即d=0 (或由f(0)=0得d=0),
∴f(x)=ax3+cx,
则f′(x)=3ax2+c,又当x=1时,f(x)取得极值-2,
f(1)=?2
f′(1)=0
,即
a+c=?2
3a+c=0
,解得
a=1
c=?3

∴f(x)=x3-3x;
(2)解:f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)=0,得x=±1.
当-1<x<1时,f′(x)<0,函数f(x)单调递减;
当x<-1或x>1时,f′(x)>0,函数f(x)单调递增;
∴函数f(x)的递增区间是(-∞,-1),(1,+∞);
递减区间为(-1,1).
因此,f(x)在x=-1处取得极大值,且极大值为f(-1)=2;
(3)证明:由(2)知,函数f(x)在区间[-1,1]上单调递减,
且f(x)在区间[-1,1]上的最大值为M=f(-1)=2.最小值为m=f(1)=-2.
∴对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<M-m=4成立. 
即对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式