已知奇函数f(x)在定义域[-3,3]上是减函数,且满足f(a2-2a)+f(2-a)<0,求实数a的取值范围

已知奇函数f(x)在定义域[-3,3]上是减函数,且满足f(a2-2a)+f(2-a)<0,求实数a的取值范围.... 已知奇函数f(x)在定义域[-3,3]上是减函数,且满足f(a2-2a)+f(2-a)<0,求实数a的取值范围. 展开
 我来答
ruan101963
2014-11-02 · 超过61用户采纳过TA的回答
知道答主
回答量:122
采纳率:0%
帮助的人:144万
展开全部
由f(a2-2a)+f(2-a)<0,得f(a2-2a)<-f(2-a)
∵f(x)是奇函数,∴-f(2-a)=f(a-2).
于是f(a2-2a)<f(a-2).
又由于f(x)在[-3,3]上是减函数,
因此
a2?2a>a?2
a2?2a≤3
a ?2≥?3

解得-1≤a<1或2<a≤3.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式