设f(x)是定义域为R的奇函数,g(x)是定义域为R的恒大于零的函数,且当x>0时有f′(x)g(x)<f(x)

设f(x)是定义域为R的奇函数,g(x)是定义域为R的恒大于零的函数,且当x>0时有f′(x)g(x)<f(x)g′(x).若f(1)=0,则不等式f(x)>0的解集是(... 设f(x)是定义域为R的奇函数,g(x)是定义域为R的恒大于零的函数,且当x>0时有f′(x)g(x)<f(x)g′(x).若f(1)=0,则不等式f(x)>0的解集是(  )A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞) 展开
 我来答
Kyoya13GH4
2014-08-20 · TA获得超过631个赞
知道答主
回答量:139
采纳率:83%
帮助的人:63.9万
展开全部
首先,因为g(x)是定义域为R的恒大于零的函数,所以f(x)>0式的解集等价于
f(x)
g(x)
>0的解集.
下面我们重点研究
f(x)
g(x)
的函数特性.因为当x>0,f'(x)g(x)<f(x)g'(x),所以当x>0,(
f(x)
g(x)
)
/
<0
.也就是
f(x)
g(x)
,当x>0时,是递减的.
由f(1)=0得
f(1)
g(1)
=0.所以有递减性质,(0,1)有
f(x)
g(x)
0.
由f(x)是奇函数,f(-1)=0,x<-1时,
f(x)
g(x)
=?
f(?x)
g(x)
>0 不等f(x)>0式的解集是(-∞,-1)∪(0,1),
故选C.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式