设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有∫(t,1)(0,0)2xydx+Q(x,y)dy...
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有∫(t,1)(0,0)2xydx+Q(x,y)dy=∫(1,t)(0,0)2xydx+Q(x,y)dy,求Q(x,y).
展开
展开全部
由平面上曲线积分与路径无关的条件可得
=
=2x,从而可得
Q(x,y)=x2+C(y),
其中,C(y)待定.
因为积分与路径无关,取 (0,0)→(t,0)→(t,1),
则
2xydx+Q(x,y)dy
=
[t2+C(y)]dy
=t2+
C(y)dy.
取 (0,0)→(0,t)→(1,t),则
2xydx+Q(x,y)dy
=
C(y)dy+
2txdx
=
C(y)dy+t.
由题设
2xydx+Q(x,y)dy=
2xydx+Q(x,y)dy 可知,
t2+
C(y)dy=
C(y)dy+t.
两边对t求导可得,
2t=C(t)+1,
所以 C(t)=2t-1,
从而 C(y)=2y-1.
故有,
Q(x,y)=x2+2y-1.
?Q |
?x |
?(2xy) |
?y |
Q(x,y)=x2+C(y),
其中,C(y)待定.
因为积分与路径无关,取 (0,0)→(t,0)→(t,1),
则
∫ | (t,1) (0,0) |
=
∫ | 1 0 |
=t2+
∫ | 1 0 |
取 (0,0)→(0,t)→(1,t),则
∫ | (1,t) (0,0) |
=
∫ | t 0 |
∫ | 1 0 |
=
∫ | t 0 |
由题设
∫ | (t,1) (0,0) |
∫ | (1,t) (0,0) |
t2+
∫ | 1 0 |
∫ | t 0 |
两边对t求导可得,
2t=C(t)+1,
所以 C(t)=2t-1,
从而 C(y)=2y-1.
故有,
Q(x,y)=x2+2y-1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |