在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上一动点,点Q为
在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上一动点,点Q为边AC上一动点,且∠PDQ=90°.(1)...
在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上一动点,点Q为边AC上一动点,且∠PDQ=90°. (1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP的长.
展开
试题分析:(1)先根据勾股定理求得BC的长,再结合点D为BC的中点可得CD的长,然后证得△ABC∽△DEC,根据相似三角形的性质即可求得结果; (2)分①当点P在AB边上时,②当点P在AB的延长线上时,根据相似三角形的性质求解即可; (3)由△BPD∽△EQD可得 ![](https://iknow-pic.cdn.bcebos.com/b3b7d0a20cf431ada5c6778b4836acaf2edd986f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,若设BP="x" ,则 ![](https://iknow-pic.cdn.bcebos.com/38dbb6fd5266d016d02aaa9a942bd40735fa3554?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ![](https://iknow-pic.cdn.bcebos.com/d1160924ab18972b08093478e5cd7b899e510a54?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,可得 ![](https://iknow-pic.cdn.bcebos.com/adaf2edda3cc7cd9f839006b3a01213fb80e916f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,即得∠QPD=∠C,又可证∠PDE=∠CDQ,则可得△PDF∽△CDQ,再分①当CQ=CD时,②当QC=QD时,③当DC=DQ时,三种情况,根据等腰三角形的性质求解即可. (1)在Rt△ABC中,∠A=90°,AB=6,AC=8 ∴BC=10 点D为BC的中点 ∴CD=5 可证△ABC∽△DEC ∴ ![](https://iknow-pic.cdn.bcebos.com/c75c10385343fbf2ed389291b37eca8065388f6f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , 即 ∴ ![](https://iknow-pic.cdn.bcebos.com/9345d688d43f879468cc7c9cd11b0ef41bd53a54?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ![](https://iknow-pic.cdn.bcebos.com/b17eca8065380cd7f40a965fa244ad345982816f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ; (2)①当点P在AB边上时,在Rt△ABC中,∠B+∠C=90°, 在Rt△EDC中,∠DEC+∠C=90°, ∴∠DEC=∠B ∵DE⊥BC,∠PDQ=90° ∴∠PDQ=∠BDE=90° ∴∠BDP=∠EDQ ∴△BPD∽△EQD ∴ ![](https://iknow-pic.cdn.bcebos.com/cb8065380cd79123f1f4a0c6ae345982b2b7806f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,即 ![](https://iknow-pic.cdn.bcebos.com/64380cd7912397ddc66dacb65a82b2b7d0a2876f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ∴ ∴CQ=EC-EQ ![](https://iknow-pic.cdn.bcebos.com/96dda144ad345982d89ed1200ff431adcbef846f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ; ②当点P在AB的延长线上时,同理可得: ![](https://iknow-pic.cdn.bcebos.com/dcc451da81cb39db60f353e4d3160924ab183054?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ∴CQ=EC+EQ ![](https://iknow-pic.cdn.bcebos.com/5882b2b7d0a20cf45c84ca6d75094b36acaf996f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ; (3)∵线段PQ与线段DE的交点为点F, ∴点P在边AB上 ∵△BPD∽△EQD ∴ 若设BP="x" ,则 ![](https://iknow-pic.cdn.bcebos.com/38dbb6fd5266d016d02aaa9a942bd40735fa3554?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ![](https://iknow-pic.cdn.bcebos.com/d1160924ab18972b08093478e5cd7b899e510a54?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,可得 ∴∠QPD=∠C 又可证∠PDE="∠CDQ" ∴△PDF∽△CDQ ∵△PDF为等腰三角形 ∴△CDQ为等腰三角形 ①当CQ=CD时,可得 ![](https://iknow-pic.cdn.bcebos.com/d50735fae6cd7b897e5f0e310c2442a7d9330e54?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,解得 ②当QC=QD时, 过点Q作QM⊥CB于M, ∴ ![](https://iknow-pic.cdn.bcebos.com/0eb30f2442a7d9332d9bd0c1ae4bd11373f00154?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ∴ ![](https://iknow-pic.cdn.bcebos.com/3801213fb80e7bec2fce37532c2eb9389b506b6f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,解得 ③当DC=DQ时,过点D作DN⊥CQ于N, ∴ ![](https://iknow-pic.cdn.bcebos.com/72f082025aafa40fa6f5fa6fa864034f78f01954?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) , ∴ ![](https://iknow-pic.cdn.bcebos.com/b90e7bec54e736d15207b8ba98504fc2d562696f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) ,解得 ![](https://iknow-pic.cdn.bcebos.com/55e736d12f2eb938e4794e40d6628535e5dd6f6f?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) (不合题意,舍去) ∴综上所述, ![](https://iknow-pic.cdn.bcebos.com/aec379310a55b3191ccab6c740a98226cffc1754?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) 或 ![](https://iknow-pic.cdn.bcebos.com/78310a55b319ebc44f4b422b8126cffc1e171654?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto) . 点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型. |
收起
为你推荐: