(2004?辽宁)已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为
(2004?辽宁)已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点.(1)证明平面PED⊥平面...
(2004?辽宁)已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点.(1)证明平面PED⊥平面PAB;(2)求二面角P-AB-F的平面角的余弦值.
展开
1个回答
展开全部
(1)证明:连接BD.∵AB=AD,∠DAB=60°,∴△ADB为等边三角形.
∵E是AB中点,∴AB⊥DE.(2分)∵PD⊥面ABCD,AB?面ABCD,∴AB⊥PD.
∵DE?面PED,PD?面PED,DE∩PD=D,∴AB⊥面PED. (4分)
∵AB?面PAB,∴面PED⊥面PAB. (6分)
(2)解:∵AB⊥平面PED,PE?面PED,∴AB⊥PE.
连接EF,∵EF?PED,∴AB⊥EF.∴∠PEF为二面角P-AB-F的平面角.(9分)
设AD=2,那么PF=FD=1,DE=
.
在△PEF中,PE=
,EF=2,PF=1,
∴cos∠PEF=
=
,
即二面角P-AB-F的平面角的余弦值为
.(12分)
∵E是AB中点,∴AB⊥DE.(2分)∵PD⊥面ABCD,AB?面ABCD,∴AB⊥PD.
∵DE?面PED,PD?面PED,DE∩PD=D,∴AB⊥面PED. (4分)
∵AB?面PAB,∴面PED⊥面PAB. (6分)
(2)解:∵AB⊥平面PED,PE?面PED,∴AB⊥PE.
连接EF,∵EF?PED,∴AB⊥EF.∴∠PEF为二面角P-AB-F的平面角.(9分)
设AD=2,那么PF=FD=1,DE=
3 |
在△PEF中,PE=
7 |
∴cos∠PEF=
(
| ||
2×2
|
5
| ||
14 |
即二面角P-AB-F的平面角的余弦值为
5
| ||
14 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询