已知数列{an}中,其前n项和为Sn,且n,an,Sn成等差数列(n∈N*).(1)求数列{an}的通项公式;(2)求S
已知数列{an}中,其前n项和为Sn,且n,an,Sn成等差数列(n∈N*).(1)求数列{an}的通项公式;(2)求Sn>57时n的取值范围....
已知数列{an}中,其前n项和为Sn,且n,an,Sn成等差数列(n∈N*).(1)求数列{an}的通项公式;(2)求Sn>57时n的取值范围.
展开
1个回答
展开全部
(1)由已知,n,an,Sn成等差数列,所以Sn=2an-n,Sn-1=2an-1-(n-1),(n≥2)
两式相减得an=Sn-Sn-1=2an-2an-1-1,
即an=2an-1+1,两边加上1,得an+1=2(an-1+1),
所以数列{an+1}是等比数列,且公比q=2,又S1=2a1-1,∴a1=1,a1+1=2
数列{an+1}的通项公式为an+1=2?2n-1=2n,所以数列{an}的通项公式an=2n-1,
(2)由(1)知,Sn=2an-n=2n+1-2-n,所以Sn+1-Sn=2n+1-1>0,{Sn}为递增数列.
Sn>57时,2n+1-n>59,又当n=5时,26-5=59,所以n>5
两式相减得an=Sn-Sn-1=2an-2an-1-1,
即an=2an-1+1,两边加上1,得an+1=2(an-1+1),
所以数列{an+1}是等比数列,且公比q=2,又S1=2a1-1,∴a1=1,a1+1=2
数列{an+1}的通项公式为an+1=2?2n-1=2n,所以数列{an}的通项公式an=2n-1,
(2)由(1)知,Sn=2an-n=2n+1-2-n,所以Sn+1-Sn=2n+1-1>0,{Sn}为递增数列.
Sn>57时,2n+1-n>59,又当n=5时,26-5=59,所以n>5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询