(2013?黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E
(2013?黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF...
(2013?黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是( )A.1B.2C.3D.4
展开
1个回答
展开全部
解:(1)结论①正确.理由如下:
∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,
∴∠6=∠CMN,又∵∠5=∠CMN,
∴∠5=∠6,
∴AM=AE=BF.
易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.
在△ACM与△ABF中,
,
∴△ACM≌△ABF(SAS),
∴CM=AF;
(2)结论②正确.理由如下:
∵△ACM≌△ABF,∴∠2=∠4,
∵∠2+∠6=90°,∴∠4+∠6=90°,
∴CE⊥AF;
(3)结论③正确.理由如下:
证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,
∴∠7=∠2,∵∠2=∠4,
∴∠7=∠4,又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
证法二:∵CE⊥AF,∠1=∠2,
∴△ACF为等腰三角形,AC=CF,点G为AF中点.
在Rt△ANF中,点G为斜边AF中点,
∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.
在△ADG与△NCG中,
,
∴△ADG≌△NCG(SAS),
∴∠7=∠1,又∵∠1=∠2=∠4,
∴∠7=∠4,又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
(4)结论④正确.理由如下:
证法一:∵A、D、C、G四点共圆,
∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,
∴∠DGC=∠DGA,即GD平分∠AGC.
证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2
则∠CGN=180°-∠1-90°-∠MNG=180°-∠1-90°-∠3=90°-∠1-∠2=45°.
∵△ADG≌△NCG,
∴∠DGA=∠CGN=45°=
∠AGC,
∴GD平分∠AGC.
综上所述,正确的结论是:①②③④,共4个.
故选D.
∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,
∴∠6=∠CMN,又∵∠5=∠CMN,
∴∠5=∠6,
∴AM=AE=BF.
易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.
在△ACM与△ABF中,
|
∴△ACM≌△ABF(SAS),
∴CM=AF;
(2)结论②正确.理由如下:
∵△ACM≌△ABF,∴∠2=∠4,
∵∠2+∠6=90°,∴∠4+∠6=90°,
∴CE⊥AF;
(3)结论③正确.理由如下:
证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,
∴∠7=∠2,∵∠2=∠4,
∴∠7=∠4,又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
证法二:∵CE⊥AF,∠1=∠2,
∴△ACF为等腰三角形,AC=CF,点G为AF中点.
在Rt△ANF中,点G为斜边AF中点,
∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.
在△ADG与△NCG中,
|
∴△ADG≌△NCG(SAS),
∴∠7=∠1,又∵∠1=∠2=∠4,
∴∠7=∠4,又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
(4)结论④正确.理由如下:
证法一:∵A、D、C、G四点共圆,
∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,
∴∠DGC=∠DGA,即GD平分∠AGC.
证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2
则∠CGN=180°-∠1-90°-∠MNG=180°-∠1-90°-∠3=90°-∠1-∠2=45°.
∵△ADG≌△NCG,
∴∠DGA=∠CGN=45°=
1 |
2 |
∴GD平分∠AGC.
综上所述,正确的结论是:①②③④,共4个.
故选D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询