如图①,已知抛物线y=ax2+bx+c经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),(1)求该抛

如图①,已知抛物线y=ax2+bx+c经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),(1)求该抛物线的解析式;(2)现将它向右平移m(m>0)个单位,所... 如图①,已知抛物线y=ax2+bx+c经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),(1)求该抛物线的解析式;(2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式;(3)如图②,以点A为圆心,以线段OA为半径画圆,交抛物线y=ax2+bx+c的对称轴于点B,连接AB,若将抛物线向右平移m(m>0)个单位后,B点的对应点为B′,A点的对应点为A′点,且满足四边形BAA′B′为菱形,平移后的抛物线的对称轴与菱形的对角线BA′交于点E,在x轴上是否存在一点F,使得以E、F、A′为顶点的三角形与△BAE相似?若存在,求出F点坐标;若不存在,说明理由. 展开
 我来答
斑驳的夜7053
推荐于2016-11-10 · TA获得超过134个赞
知道答主
回答量:131
采纳率:100%
帮助的人:64.6万
展开全部
(1)由抛物线y=ax2+bx+c经过坐标原点可得,
c=0,
由顶点M坐标为(1,2),可得A点坐标为(2,0),
将他们的坐标值分别代入解析式可得,
2=a+b
0=4a+2b

解得,
a=?2
b=4

故该抛物线的解析式为:y=-2x2+4x;

(2)现将它向右平移m(m>0)个单位,所得抛物线解析式为:
y=-2(x-m)2+4(x-m),
原抛物线与平移后的解析式交于P点,
则有
y=?2x2+4x
y=?2(x?m)2+4(x?m)

解得,
x=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消
m