公鸡5元一只,母鸡3元一只,小鸡一元3只。100元钱买100只鸡,问公鸡 母鸡 小鸡各多少只?
公鸡0只,母鸡25只,小鸡75只;公鸡4只,母鸡18只,小鸡78只;公鸡8只,母鸡11只,小鸡81只;公鸡12只,母鸡4只,小鸡84只。
一、假设买了公鸡a只,母鸡b只,小鸡c只;
二、那么则有:a+b+c=100,5a+3b+3c=100;a、b、c都为正整数;
三、将“5a+3b+3c=100”变形得到3(a+b)=100-5a,即“100-5a”必须是3的倍数,且a取值范围在0-20之间,符合这样的要求的解有:
1、a=0、b=25、c=75,对应公鸡0只,母鸡25只,小鸡75只;
2、a=4、b=18、c=78,对应公鸡4只,母鸡18只,小鸡78只;
3、a=8、b=11、c=81,对应公鸡8只,母鸡11只,小鸡81只;
4、a=12、b=4、c=84,对应公鸡12只,母鸡4只,小鸡84只;
扩展资料:
解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,将“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。
他们主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。其思路都是利用消元法逐步消元。步骤:
1、利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
2、解这个二元一次方程组,求得两个未知数的值;
3、将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。
每大组7只鸡:其中1只公鸡和6只小鸡。共值7元钱。(因为1只公鸡5元钱,3只小鸡1元钱,6只小鸡2元钱),恰好是平均1元钱买1只鸡。
无论100只鸡共可分成多少个大组和多少个小组,都是平均每1文钱买1只鸡。100只鸡共可分成多少个大组和多少个小组呢?
通过分析试探可发现有以下几种情况。
①分成4个大组,18个小组。
4个大组中公鸡有:1×4=4(只)
4个大组中小鸡有:6×4=24(只)
18个小组中母鸡有:1×18=18(只)
18个小组中小鸡有:3×18=54(只)
这种情况共有公鸡4只,母鸡18只,小鸡(24+54=)78(只)。
②分成8个大组,11个小组。
8个大组中公鸡有:1×8=8(只)
8个大组中小鸡有:6×8=48(只)
11个小组中母鸡有:1×11=11(只)
11个小组中小鸡有:3×11=33(只)
这种情况共有公鸡8只,母鸡11只,小鸡(48+33=)81(只)。
③分成12个大组,4个小组。
12个大组中公鸡有:1×12=12(只)
12个大组中小鸡有:6×12=72(只)
4个小组中母鸡有:1×4=4(只)
4个小组中小鸡有:3×4=12(只)
这种情况共有公鸡12只,母鸡4只,小鸡(72+12=)84(只)。所以本题共有三种可能性:公鸡买4只,母鸡买18只,小鸡买78只;或公鸡买8只,母鸡买11只,小鸡买81只;或公鸡买12只,母鸡买4只,小鸡买84只。
┏ (^ω^)=☞
由题意得方程:
5X+3Y+Z/3=100 1
X+Y+Z=100 2
由 方程“2”*9 -“1”*3 得:
4z-3x=300 (z/3为整数 且由“2”只 x、y、z 均小于100 ) 3
由方程“2”*15-“1”*3 得
3y+7z=600 4
由方程“1”*3- “2”得
14x+8y=200 5
由3得 4z=300+3x 显然 z必须大于等于75且小于等于9; 同理得x小于33
由4得 z 小于等于84 同理 得y小于等于25
5得 x小于14 y小于等于25
综上得
x小于14
y小于等于25
z 大于等于75小于等于84且被3整除
综合 X+Y+Z=100 得
当 z=75由"3"得 x=0 y=25 同上
当z=78 x=4 y=18
当z=81 x=8 y=11
当z=84 x=12 y=4
即得4种答案:
1.公鸡0只 母鸡25只 小鸡75只
2.公鸡4只 母鸡18只 小鸡78只
3.公鸡8只 母鸡11只 小鸡81只
4.公鸡12只 母鸡4只 小鸡84只
错了
母鸡小鸡各10只 公鸡8只