∮xzdxdy+xydydz+yzdzdx,∑为平面x=o,y=0,z=0,x+y+z=1所围成的

∮xzdxdy+xydydz+yzdzdx,∑为平面x=o,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧... ∮xzdxdy+xydydz+yzdzdx,∑为平面x=o,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧 展开
 我来答
蓝雪儿老师
高能答主

2019-10-11 · 愿千里马,都找到自己的伯乐!
蓝雪儿老师
采纳数:266 获赞数:85205

向TA提问 私信TA
展开全部

由于轮换对称性,对三个坐标平面上的积分面的第二类曲面积分值相等,不妨取左侧面对该积分计算:

由于该面上的单位法向量为n=(0,-1,0) 带入积分有∫∫xydydz+yzdzdx+xzdxdy= -∫∫yzdS 其中dS=dzdx 。

所以∫∫xydydz+yzdzdx+xzdxdy= -∫∫yzdzdx,化为二重积分,积分面为左侧面,带入y=0,再计算x+y+z=1面上的积分,由于轮换对称性,在该积分面上∫∫xydydz=∫∫yzdzdx=∫∫xzdxdy。

则∫∫xydydz+yzdzdx+xzdxdy=3∫∫xzdxdy 由于定向为正向,则由1-x-y=z带入得二重积分。

3∫∫xzdxdy=3∫∫x(1-x-y)dxdy 积分面为xy坐标面上的0≤x≤1 0≤y≤1-x 最终计算值为1/8。

扩展资料:

1、公式种类

不定积分

是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

注:∫f(x)dx+c1=∫f(x)dx+c2, 不能推出c1=c2

定积分

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分记为:

若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

2、公式汇总

不定积分

不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分。

含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有数函数的积分、含有对数函数的积分、含有双曲函数的积分。

含a+bx的积分

含有a+bx的积分公式主要有以下几类:

含√(a+bx)的积分

含有√(a+bx)的积分公式主要包含有以下几类:


3、积分性质

线性性

积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

保号性

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。

可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。[6][3]

如果黎曼可积的非负函数f在

上的积分等于0,那么除了有限个点以外,f = 0。如果勒贝格可积的非负函数f在

上的积分等于0,那么f几乎处处为0。如果

中元素A的测度μ (A)等于0,那么任何可积函数在A上的积分等于0。

函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。

如果两个函数几乎处处相同,那么它们的积分相同。如果对

中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。

茹翊神谕者

2023-07-03 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1608万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
li949507925
2015-06-04 · TA获得超过572个赞
知道小有建树答主
回答量:258
采纳率:100%
帮助的人:70.2万
展开全部
用gauss公式,对原函数化成三重积分做,还用再说吗?外侧记得取正号
追问
帮忙做一下吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式