lim(1/√(n²+1)+1/√(n²+2)+……+1/√(n²+n)的极限

 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
泰傲晴5D
2018-06-18
知道答主
回答量:3
采纳率:0%
帮助的人:2399
展开全部
原式>lim(1/√n²+1/√n²+1/√n²+1/√n²+1/√n²+……+1/√n²)=lim(1/n+1/n+……+1/n)=lim(n/n)1
原式<lim(1/√(n²+n)+1/√(n²+n)+……+1/√(n²+n))=lim(n/√(n²+n))=lim(1/√(1+1/n))=1
由夹逼定理可知
原式=1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2015-10-27
展开全部
不明
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式