用平方差公式解
展开全部
1)(x-y)(x+y)(x^2+y^2)(x^4+y^4)*...*(x^16+y^16)
=[(x-y)(x+y)](x^2+y^2)(x^4+y^4)*...*(x^16+y^16)
=(x^2-y^2)(x^2+y^2)(x^4+y^4)*...*(x^16+y^16)
=[(x^2-y^2)(x^2+y^2)](x^4+y^4)*...*(x^16+y^16)
=(x^4-y^4)(x^4+y^4)*...*(x^16+y^16)
=[(x^4-y^4)(x^4+y^4)]*...*(x^16+y^16)
=(x^8-y^8)*...*(x^16+y^16)
...
=(x^16-y^16)(x^16+y^16)
=(x^32-y^32)
2)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=[1/3*3]*(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=1/3*(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=1/3*[(2^2-1)(2^2+1)](2^4+1)(2^8+1)(2^16+1)
=1/3[(2^4-1)(2^4+1)](2^8+1)(2^16+1)
=1/3[(2^8-1)(2^8+1)](2^16+1)
=1/3(2^16-1)(2^16+1)
=1/3*(2^32-1)
=[(x-y)(x+y)](x^2+y^2)(x^4+y^4)*...*(x^16+y^16)
=(x^2-y^2)(x^2+y^2)(x^4+y^4)*...*(x^16+y^16)
=[(x^2-y^2)(x^2+y^2)](x^4+y^4)*...*(x^16+y^16)
=(x^4-y^4)(x^4+y^4)*...*(x^16+y^16)
=[(x^4-y^4)(x^4+y^4)]*...*(x^16+y^16)
=(x^8-y^8)*...*(x^16+y^16)
...
=(x^16-y^16)(x^16+y^16)
=(x^32-y^32)
2)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=[1/3*3]*(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=1/3*(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=1/3*[(2^2-1)(2^2+1)](2^4+1)(2^8+1)(2^16+1)
=1/3[(2^4-1)(2^4+1)](2^8+1)(2^16+1)
=1/3[(2^8-1)(2^8+1)](2^16+1)
=1/3(2^16-1)(2^16+1)
=1/3*(2^32-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一:=(x^2-y^2)(x^2+Y^2)(x^4+y^4)...(x^16+y^16)
=(x^4-y^4)(x^4+y^4)..(x^16+y^16)
= (x^16-y^16)(x^16+y^16)
=x^32-y^32
第二:=(2^2+1)(2^2-1)(2^4+1)(2^8+1)(2^16+1)除以(2^2-1)
=(2^32-1)除以(2^2-1)
=(2^32-1)除以3
=(x^4-y^4)(x^4+y^4)..(x^16+y^16)
= (x^16-y^16)(x^16+y^16)
=x^32-y^32
第二:=(2^2+1)(2^2-1)(2^4+1)(2^8+1)(2^16+1)除以(2^2-1)
=(2^32-1)除以(2^2-1)
=(2^32-1)除以3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你他妈的,不怎么那么蠢呢?连这道题都不会!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询