求大神帮忙做一下数学题
2个回答
展开全部
已知向量m、n互相垂直,则:
sinB(5sinB-6sinC)+(5sinA+5sinC)(sinC-sinA)=0
==> 5sin²B-6sinBsinC+5sin²C-5sin²A=0
==> 5b²-6bc+5c²-5a²=0
==> 5(b²+c²-a²)=6bc
==> (b²+c²-a²)/2bc=3/5
==> cosA=3/5
所以,sinA=4/5
由正弦定理有:a/sinA=b/sinB=c/sinC
==> 2√2/(4/5)=b/sinB=c/sinC
==> b=(5√2/2)sinB,c=(2√5/2)sinC
则,S△ABC=(1/2)bcsinA=(1/2)×(2√5/2)²*sinB*sinC×(4/5)=5sinBsinC
=(-5/2)[cos(B+C)-cos(B-C)]
=(5/2)[cos(B-C)-cos(B+C)]
=(5/2)[cos(B-C)+cosA]
=(5/2)[cos(B-C)+(3/5)]
所以,当B=C时,上式有最大值=(5/2)[1+(3/5)]=4
sinB(5sinB-6sinC)+(5sinA+5sinC)(sinC-sinA)=0
==> 5sin²B-6sinBsinC+5sin²C-5sin²A=0
==> 5b²-6bc+5c²-5a²=0
==> 5(b²+c²-a²)=6bc
==> (b²+c²-a²)/2bc=3/5
==> cosA=3/5
所以,sinA=4/5
由正弦定理有:a/sinA=b/sinB=c/sinC
==> 2√2/(4/5)=b/sinB=c/sinC
==> b=(5√2/2)sinB,c=(2√5/2)sinC
则,S△ABC=(1/2)bcsinA=(1/2)×(2√5/2)²*sinB*sinC×(4/5)=5sinBsinC
=(-5/2)[cos(B+C)-cos(B-C)]
=(5/2)[cos(B-C)-cos(B+C)]
=(5/2)[cos(B-C)+cosA]
=(5/2)[cos(B-C)+(3/5)]
所以,当B=C时,上式有最大值=(5/2)[1+(3/5)]=4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询