在数学教学中,怎样培养学生的思维能力?请举出你在教学过程中成功培养学生思维能力
5个回答
展开全部
培养学生的思维能力是小学数学教学实施素质教育的需要,在新的课程改革形势下,也是小学数学教学的重要任务之一。在小学数学教学中,我们可以根据每节课、每个教学环节不同的内容,选择恰当的教学方法,在教学基础知识,训练技巧的同时,通过学生的看、想、说、做等,训练和培养学生的思维能力。
一、从自学中培养独立思考能力
自学,是在教师指导下学生为了获取新知识而独立开展的学习活动。要培养学生独立思考的能力,我们可以从学生的自学中进行。开始时,教师可提出自学要求或编拟自学提纲,让学生在教师正式授课之前按自学要求或对照自学提纲在课前或课内自学课本。自学时可以讨论,看不懂的地方可以做上记号,然后问问老师或同学。经过一段时间的训练之后,可以逐步从依赖自学提纲过渡到不依赖自学提纲,最后完全放手让学生自学。通过这个途径,培养学生独立学习知识和掌握技能的能力,发展学生的思维能力。例如,在教学六年制小学数学第五册“长方形和正方形的认识”时,教师就可以提出这样的自学要求和思考问题:(1)自学课本第100页例1(从顺数第三行到倒数第五行),边看边思考;(2)例1中的两个图形各是什么形?它们各有几条边,几个角?每个角是什么角?用三角板比比看:(3)长方形和正方形有什么相同点和不同点?可以互相讨论。在教师指导下,学生通过看书、思考、辅以议论、质疑、操作,达到了掌握知识、发展思维、培养自学能力的目的。
二、在探讨中培养分析问题能力
在学习新知阶段,教师重视加强操作感和知识迁移的指导,从整体到局部设计有坡度、有层次、有启发性、符合学生认识规律的系列问题和操作要求,让学生经历探索新知识的思维过程,引导学生自己想问题、寻方法、作结论,发现新知识的规律,从而培养学生学习能力,发展学生智力。例如,在教学 “乘数是三位数的乘法”时,(一学生板演、其余座练)通过一道题复习了两位数乘多位数的计算法则后,教师把板演竖式中的积擦去,在乘数上添上百位数2,使学生呈现新问题。接着,教师提出自学探讨问题:①现在乘数增加了一个百位数,应该怎样继续乘下去?②乘数的百位上的数是在什么情况下去乘的,它是怎样去乘的?③它和用个位上的数、十位上的数去乘有什么相同和不同的地方?④ 为什么百位上的数乘被乘数所得的积的末位要与百位对齐?在教师的明确指导下,学生的自学思考过程就进入到一个有意义的、有序的信息系统中,然后在展开观察、分析、综合、比较、议论、动手尝试等一系列活动中,充分调动学生主动获取知识的积极性,这样就有利于培养学生的探究能力和提高学生分析解决问题的能力,促进学生思维的发展。
三、从说理中培养语言表达能力。
培养学生逻辑思维能力和训练学生的数学语言是分不开的。语言是思维的工具,思维过程要靠语言表达,而语言的发展又能促进学生思维的发展。因此,在教学中教师应创造条件让学生更多地说理。如:说定义、定律、法则、公式、过程、算理、方法、规律、题意、思路、数量关系、式义等,从说理中训练和培养学生的语言表达能力,从而达到发展学生数学思维的目的。例如,在教学六年制小学数学第九册“梯形面积的计算”时,当学生通过动手操作把两个完全一样的梯形拼成一个平行四边形后,教师启发学生看图用准确简炼的数学语言,有条理、有根据地叙述公式的推导过程。即,两个完全一样的梯形可以拼成一个平行四边形,这个平形四边形的底等于这两个梯形的上底与下底的和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2。这样不仅可以训练学生的语言表达能力,加深学生对知识的理解,也培养了学生思维的逻辑性。
四、从训练中培养灵活思维能力
这里所说的训练是指课堂练习。练习是数学教学的重要组成部分,是使学生掌握知识、形成技能、发展智力的重要手段,这是沟通知识与能力的桥梁。教师有目的、有计划、有步骤的精心巧设有指导性的课堂练习是培养学生思维灵活性和发展学生逻辑思维能的重要途径。因此,在小学数学教学过程中,当学生学习过一个新知识后,教师可根据教学内容和要求,从这几个方面精心设计练习:①围绕教学重、难点设计专项练习;②针对易混易错知识设计对比性练习;③根据学生的思维特点设计变式练习;④根据不同程度的 学生设计不同层次的练习。通过训练,巩固基础知识,克服思维定势,提高学生的应变能力和综合解决问题的能力。
五、从评讲中培养判断推理能力
一般来说,在课堂上,教学了例题后,教师都要给学生进行巩固练习,学生练习完后还要组织评讲,让学生运用数学概念、基本原理对每种问题先作出肯定或否定,然后再作出合乎逻辑的解释,有根有据地说明理由,这与引导学生经历各种思维过程一样,都是培养初步的逻辑思维能力的需要。
六、从小结中培养归纳概括能力
一般来说,在课堂上,对所教学的新知识,教师都要引导学生进行归纳小结,配合小结应充分发挥学生的主体作用,让他们自己通过归纳、综合和概括来反映概念的本质属性和数学的一般原理。例如,数学六年制小学数学第七册49页的“口算乘法”,先引导学生口算并写上每道题的得数(题目如下),接着教师启发提问:请观察例1、2左右两边的。
例1 100×4=400 4×100=400
100×12=1200 12×100=1200
例2 7×200=1400
12×300=3600
算式,用整百数乘的口算,你发现了什么规律?在教师的具体指导下,学生通过观察、综合、归纳和概括,得出了其规律:用整百数乘的口算,被乘数或乘数有几个0,积的末尾就有几个0。这样就有效地培养了学生的观察、归纳和概括能力。
对学生进行思维能力的培养,要立足于课堂,功夫要下在课内,并且应该灵活地把它贯穿于各个教学环节之中,这样才能收到良好的教学效果。
一、从自学中培养独立思考能力
自学,是在教师指导下学生为了获取新知识而独立开展的学习活动。要培养学生独立思考的能力,我们可以从学生的自学中进行。开始时,教师可提出自学要求或编拟自学提纲,让学生在教师正式授课之前按自学要求或对照自学提纲在课前或课内自学课本。自学时可以讨论,看不懂的地方可以做上记号,然后问问老师或同学。经过一段时间的训练之后,可以逐步从依赖自学提纲过渡到不依赖自学提纲,最后完全放手让学生自学。通过这个途径,培养学生独立学习知识和掌握技能的能力,发展学生的思维能力。例如,在教学六年制小学数学第五册“长方形和正方形的认识”时,教师就可以提出这样的自学要求和思考问题:(1)自学课本第100页例1(从顺数第三行到倒数第五行),边看边思考;(2)例1中的两个图形各是什么形?它们各有几条边,几个角?每个角是什么角?用三角板比比看:(3)长方形和正方形有什么相同点和不同点?可以互相讨论。在教师指导下,学生通过看书、思考、辅以议论、质疑、操作,达到了掌握知识、发展思维、培养自学能力的目的。
二、在探讨中培养分析问题能力
在学习新知阶段,教师重视加强操作感和知识迁移的指导,从整体到局部设计有坡度、有层次、有启发性、符合学生认识规律的系列问题和操作要求,让学生经历探索新知识的思维过程,引导学生自己想问题、寻方法、作结论,发现新知识的规律,从而培养学生学习能力,发展学生智力。例如,在教学 “乘数是三位数的乘法”时,(一学生板演、其余座练)通过一道题复习了两位数乘多位数的计算法则后,教师把板演竖式中的积擦去,在乘数上添上百位数2,使学生呈现新问题。接着,教师提出自学探讨问题:①现在乘数增加了一个百位数,应该怎样继续乘下去?②乘数的百位上的数是在什么情况下去乘的,它是怎样去乘的?③它和用个位上的数、十位上的数去乘有什么相同和不同的地方?④ 为什么百位上的数乘被乘数所得的积的末位要与百位对齐?在教师的明确指导下,学生的自学思考过程就进入到一个有意义的、有序的信息系统中,然后在展开观察、分析、综合、比较、议论、动手尝试等一系列活动中,充分调动学生主动获取知识的积极性,这样就有利于培养学生的探究能力和提高学生分析解决问题的能力,促进学生思维的发展。
三、从说理中培养语言表达能力。
培养学生逻辑思维能力和训练学生的数学语言是分不开的。语言是思维的工具,思维过程要靠语言表达,而语言的发展又能促进学生思维的发展。因此,在教学中教师应创造条件让学生更多地说理。如:说定义、定律、法则、公式、过程、算理、方法、规律、题意、思路、数量关系、式义等,从说理中训练和培养学生的语言表达能力,从而达到发展学生数学思维的目的。例如,在教学六年制小学数学第九册“梯形面积的计算”时,当学生通过动手操作把两个完全一样的梯形拼成一个平行四边形后,教师启发学生看图用准确简炼的数学语言,有条理、有根据地叙述公式的推导过程。即,两个完全一样的梯形可以拼成一个平行四边形,这个平形四边形的底等于这两个梯形的上底与下底的和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2。这样不仅可以训练学生的语言表达能力,加深学生对知识的理解,也培养了学生思维的逻辑性。
四、从训练中培养灵活思维能力
这里所说的训练是指课堂练习。练习是数学教学的重要组成部分,是使学生掌握知识、形成技能、发展智力的重要手段,这是沟通知识与能力的桥梁。教师有目的、有计划、有步骤的精心巧设有指导性的课堂练习是培养学生思维灵活性和发展学生逻辑思维能的重要途径。因此,在小学数学教学过程中,当学生学习过一个新知识后,教师可根据教学内容和要求,从这几个方面精心设计练习:①围绕教学重、难点设计专项练习;②针对易混易错知识设计对比性练习;③根据学生的思维特点设计变式练习;④根据不同程度的 学生设计不同层次的练习。通过训练,巩固基础知识,克服思维定势,提高学生的应变能力和综合解决问题的能力。
五、从评讲中培养判断推理能力
一般来说,在课堂上,教学了例题后,教师都要给学生进行巩固练习,学生练习完后还要组织评讲,让学生运用数学概念、基本原理对每种问题先作出肯定或否定,然后再作出合乎逻辑的解释,有根有据地说明理由,这与引导学生经历各种思维过程一样,都是培养初步的逻辑思维能力的需要。
六、从小结中培养归纳概括能力
一般来说,在课堂上,对所教学的新知识,教师都要引导学生进行归纳小结,配合小结应充分发挥学生的主体作用,让他们自己通过归纳、综合和概括来反映概念的本质属性和数学的一般原理。例如,数学六年制小学数学第七册49页的“口算乘法”,先引导学生口算并写上每道题的得数(题目如下),接着教师启发提问:请观察例1、2左右两边的。
例1 100×4=400 4×100=400
100×12=1200 12×100=1200
例2 7×200=1400
12×300=3600
算式,用整百数乘的口算,你发现了什么规律?在教师的具体指导下,学生通过观察、综合、归纳和概括,得出了其规律:用整百数乘的口算,被乘数或乘数有几个0,积的末尾就有几个0。这样就有效地培养了学生的观察、归纳和概括能力。
对学生进行思维能力的培养,要立足于课堂,功夫要下在课内,并且应该灵活地把它贯穿于各个教学环节之中,这样才能收到良好的教学效果。
参考资料: http://www.little-sun.com/sunwork/sun_research
展开全部
首先我不是老师我是学生
其实我觉得思维能力这个东西有点虚 我不知道你是要撰写论文还是为了教学
如果是写论文我的回答就没用啦
要是教学的话 我个人觉得要教学生的是思考
我在高中的时候 有一个数学老师很厉害的 他将书中的例题做了更改而且是在教学过程中做的更改 一步一步的改 在改变的过程中其实我们不自觉就进行思考啦
其实我觉得思维能力这个东西有点虚 我不知道你是要撰写论文还是为了教学
如果是写论文我的回答就没用啦
要是教学的话 我个人觉得要教学生的是思考
我在高中的时候 有一个数学老师很厉害的 他将书中的例题做了更改而且是在教学过程中做的更改 一步一步的改 在改变的过程中其实我们不自觉就进行思考啦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、指导观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。
2、引导想象
“创造”一般是运用自己的知识和经验,通过有意识的想象产生出以前尚不存在的事物,因而想象是创造心理活动的起点和必经过程。事实上,大多数创造都是经过“想象--假设--实践”这样的三段式递进实现的。
进一步培养学生的想象力是完善其创造心理品质的重要环节,想象力对于创造的作用,正如哲学家康德所说:“想象力是一股强大的创造力量,它能够从实际自然所提供的材料中创造出第二自然”。为此。想象力的培养则应落实在两个方面: (1)保持和发展好奇心。(2)拓宽知识面。想象力是多种知识相互启发而生的。为此,要引导学生涉猎多领域的知识,努力形成合理的知识结构
如在学习《平行四边形的面积》时,教师利用多媒体呈现学生熟悉的情景:种植园里各种植物郁郁葱葱,分别种在划成不同形状的地块上。然后出示种有竹子和杜鹃的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的青菜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对未知领域的探索有天然的好奇,思维的积极性被激发,纷纷根据前面的知识作出如下猜测:①、面积是长边和短边长度的积。②、长边和它的高的积。③、短边和它的高的积。④、先拼成一个长方形,跟这个长方形的面积有关……教师一一板书出来,学生见自己的思维结果被肯定,心理上有一种小小的成就,从而更激起了主动探索的欲望。
3、鼓励标新立异,发展创新思维。
数学家华罗庚先生曾经说过:“人之所以可贵,在于能创造性地思维”。依据学生喜欢标新立异、表现自我的心理特点,我认为在数学教学中教师应该支持、鼓励学生思考问题时能打破常规,不墨守陈规,用于创新,敢于提出自己的看法、见解,从而培养学生的求异思维,提高学生思维的独创性。
例如:在教学“梯形面积计算”时,预先让每个学生准备两个大小全等的梯形,课堂上启发学生根据学过的三角形、平行四边形面积公式的推导方法动手拼一拼,看能不能转化成已经学过的图形,小组相互协作动手拼摆,很快就可以发现能拼成一个平行四边形并发现拼成的平行四边形的高就是原梯形的高,拼成的平行四边形的底就是原梯形上底与下底的和,于是推导出公式:梯形面积=(上底+下底)×高÷2。当我提出是否还有别的推导方法时,其他小组立即说出了他们的方法:用一个梯形沿中轴线剪开,拼成一个平行四边形可以推导出计算公式;还可以利用做平行线的方法,把梯形分割成一个平行四边形和一个三角形也可以推导出公式:梯形面积=(上底+下底)×高÷2。可见,培养学生从各个角度去研究问题,不但激发了学生学习的探索兴趣,而且发现了许多解题方法,还会迸发出创造的火花,产生创造性见解。
又如:当学生掌握了长方形和正方形周长的计算方法后,我给学生留了这样一道习题:“一根铁丝,正好可以围成边长为4厘米的正方形,如果用它围成长为6厘米的长方形,长方形的宽是多少?”学生按一般思路分析,列出(4×4-6×2)÷2;4×4÷2-6等算式,然后我又引导学生找出长方形的长于宽和正方形的边长的关系,于是有学生想出了“正方形两条边的和减去长方形的长就得到了长方形的宽:4×2-6。”还有的学生想出了“长方形的长比正方形的边长多多少,那么长方形的宽就比正方形的边长少多少:4―(6―4)。”这两种思路摆脱了思维的保守状态,体现了思维创造的美。
在解答问题时,鼓励学生从多角度思考问题,寻找不同的方法,
得到不同的解决结果,从而训练了学生的发散性思维能力,培养了学生的创新性思维。正如《学会生存》中所言,“教育既有培养创造精神的力量,也有压抑创造精神的力量。”学生能不满足已有的结论,不相信唯一的解释,只有这样才会有所发明,有所创新。
数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。
4、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
总之,只有当数学思维的材料是丰富的、广泛的、可变的;方向是明确的、清晰的、相对稳定的;内容是系统有序的、开放的、综合的;结构是有规律的、辩证的。层次的,才能发展学生思维的整体性,并使思维具有灵活性、深刻性、批判性、目的性、敏捷性甚至创造性,才有利于培养创造型人才。同时,也只有抓住了在数学课堂教学中根据教材内容,训练学生数学思维这条主线,才能培养21世纪对祖国建设有用的创造型人才!
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。
2、引导想象
“创造”一般是运用自己的知识和经验,通过有意识的想象产生出以前尚不存在的事物,因而想象是创造心理活动的起点和必经过程。事实上,大多数创造都是经过“想象--假设--实践”这样的三段式递进实现的。
进一步培养学生的想象力是完善其创造心理品质的重要环节,想象力对于创造的作用,正如哲学家康德所说:“想象力是一股强大的创造力量,它能够从实际自然所提供的材料中创造出第二自然”。为此。想象力的培养则应落实在两个方面: (1)保持和发展好奇心。(2)拓宽知识面。想象力是多种知识相互启发而生的。为此,要引导学生涉猎多领域的知识,努力形成合理的知识结构
如在学习《平行四边形的面积》时,教师利用多媒体呈现学生熟悉的情景:种植园里各种植物郁郁葱葱,分别种在划成不同形状的地块上。然后出示种有竹子和杜鹃的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的青菜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对未知领域的探索有天然的好奇,思维的积极性被激发,纷纷根据前面的知识作出如下猜测:①、面积是长边和短边长度的积。②、长边和它的高的积。③、短边和它的高的积。④、先拼成一个长方形,跟这个长方形的面积有关……教师一一板书出来,学生见自己的思维结果被肯定,心理上有一种小小的成就,从而更激起了主动探索的欲望。
3、鼓励标新立异,发展创新思维。
数学家华罗庚先生曾经说过:“人之所以可贵,在于能创造性地思维”。依据学生喜欢标新立异、表现自我的心理特点,我认为在数学教学中教师应该支持、鼓励学生思考问题时能打破常规,不墨守陈规,用于创新,敢于提出自己的看法、见解,从而培养学生的求异思维,提高学生思维的独创性。
例如:在教学“梯形面积计算”时,预先让每个学生准备两个大小全等的梯形,课堂上启发学生根据学过的三角形、平行四边形面积公式的推导方法动手拼一拼,看能不能转化成已经学过的图形,小组相互协作动手拼摆,很快就可以发现能拼成一个平行四边形并发现拼成的平行四边形的高就是原梯形的高,拼成的平行四边形的底就是原梯形上底与下底的和,于是推导出公式:梯形面积=(上底+下底)×高÷2。当我提出是否还有别的推导方法时,其他小组立即说出了他们的方法:用一个梯形沿中轴线剪开,拼成一个平行四边形可以推导出计算公式;还可以利用做平行线的方法,把梯形分割成一个平行四边形和一个三角形也可以推导出公式:梯形面积=(上底+下底)×高÷2。可见,培养学生从各个角度去研究问题,不但激发了学生学习的探索兴趣,而且发现了许多解题方法,还会迸发出创造的火花,产生创造性见解。
又如:当学生掌握了长方形和正方形周长的计算方法后,我给学生留了这样一道习题:“一根铁丝,正好可以围成边长为4厘米的正方形,如果用它围成长为6厘米的长方形,长方形的宽是多少?”学生按一般思路分析,列出(4×4-6×2)÷2;4×4÷2-6等算式,然后我又引导学生找出长方形的长于宽和正方形的边长的关系,于是有学生想出了“正方形两条边的和减去长方形的长就得到了长方形的宽:4×2-6。”还有的学生想出了“长方形的长比正方形的边长多多少,那么长方形的宽就比正方形的边长少多少:4―(6―4)。”这两种思路摆脱了思维的保守状态,体现了思维创造的美。
在解答问题时,鼓励学生从多角度思考问题,寻找不同的方法,
得到不同的解决结果,从而训练了学生的发散性思维能力,培养了学生的创新性思维。正如《学会生存》中所言,“教育既有培养创造精神的力量,也有压抑创造精神的力量。”学生能不满足已有的结论,不相信唯一的解释,只有这样才会有所发明,有所创新。
数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。
4、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
总之,只有当数学思维的材料是丰富的、广泛的、可变的;方向是明确的、清晰的、相对稳定的;内容是系统有序的、开放的、综合的;结构是有规律的、辩证的。层次的,才能发展学生思维的整体性,并使思维具有灵活性、深刻性、批判性、目的性、敏捷性甚至创造性,才有利于培养创造型人才。同时,也只有抓住了在数学课堂教学中根据教材内容,训练学生数学思维这条主线,才能培养21世纪对祖国建设有用的创造型人才!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
添加点幽默进去不就行了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
引领学生的思维逐步深入
数学思维能力对学生的学习具有潜在影响。培养学生的思维能力,题路是依据,学路是主体,教路是主导,三者要融为一体,达到最佳状态,才能收到理想的效果。而要达到上述目的,教师在课堂传授知识时,务必要抓住问题的关键循循善诱,启而有法,让学生积极去想,主动获取知识,提高思维能力。
在教学中,教师要结合教学内容尽可能地创设一些生动的教学情境,结合学生感兴趣并熟悉的事物,把生活中的数学生动地展现在课堂中,使学生眼中的数学不再是简单的数学,而是富有联系和相互连结的动感知识。教师简洁、清晰、富有逻辑性的导语提示,会以最佳状态引领学生思维逐步深入。
培养学生思维的深刻性、敏捷性、灵活性
教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。 数学思维的敏捷性主要反映了正确前提下的速度问题。运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。
数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。 为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。
2
数学思维方法一
解题过程中产生疑问,引出数学概念
教学过程是一种提出问题,解决问题不断持续的活动,因此教师可以提出一些难易程度适当的问题,引导学生积极思考,自主探究,在分析推理中发现问题,提出质疑,教师适时引入数学概念。
如此,学生不仅明确了概念引入的意义,同时强化了数学概念在解题过程中的重要地位。在这过程中,我们可以充分发挥学生的主观能动性,引导学生积极思考,大胆猜想,准确描述,有利于学生深刻地理解概念的实质,为概念的扩展及灵活运用打下良好的基础,同时培养学生思维的深刻性。
紧扣概念的本质,促成概念的串联与整合,形成概念的立体网络
通过新旧知识的广泛的、密切的联系,揭示了数学抽象的思维方式,扩大了知识的容量,使概念得到进一步巩固和深化,增加了知识的灵活运用能力,有利于数学结构化和系统化观念的形成。把相关概念结合起来形成一个知识网络体系,学生获得的概念一个个层层积累起来,教师要善于引导他们把相关知识纵横联在一起,使学生能站在某一个概念点上勾勒出立体概念网,形成整体认识。例如初中函数部分的教学,通过对生活中数量间的变化关系的认识,逐步形成函数的概念,再将一次函数、反比例函数、二次函数综合在一起,在充分掌握各函数的本质特征后,分析总结出它们之间的区别与联系,加深对函数概念的理解。
数学中的概念有些是互相联系,互相影响,相互依存的。要善于及时引导学生把有关概念归纳串联起来,融会贯通,充分揭示它们之间的内部规律,从而使学生对所学概念有个全面、系统的理解,有助于学生在解题时对数学问题的剖析,较能准确定位所要运用的数学概念。
3
数学思维方法二
开放问题,多方探索
在教学中。教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。有一道题目是:在1,3,5,6,9这一串数中,哪一个数与众不同?我提问学生后,一名学生站起来说:“6与众不同,因为这五个数中只有6不是奇数。如果把6换成7就有规律了。”我很满意这名学生的回答,于是补充说:“回答得很好,把6换成7后。这一串数就成了连续的奇数。而且每一个都比它前面的一个多2。这就是你们将来到中学要学习的等差数列。”此时,教室里活跃起来了,有同学站起来说:“老师,这一串数中,3,5,6,9都大于最小的质数2;
而1却小于2,所以说1与众不同。”又有同学说:“我发现,3与众不同,因为3是它前后两个相邻数的平均数。而其他的数都没有这个规律。”“1与众不同,因为l是奇数,而且是最小的奇数。”“6和其他的数不同,因为这五个数中,只有6才是2的倍数。”“这五个数中。能写成三个连续整数之积、和的只有6,这也能说明6和其余的数不同。”
创设问题情境
创设问题情境能够有效地激发学生的学习兴趣和强烈的思考欲望。思维能力是在学生主动、积极学习的基础上产生的,而主动、积极思维又源于学生对学习的兴趣。心理学研究表明,学生的思维总是由问题开始的,在解决问题中得到发展。
学生学习的过程本身就是一个不断创设问题情境,引起学生认知冲突,激发学生的求知欲,使学生的思维在问题思考与探索中得到促进和发展的过程。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的欲望,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。
4
数学思维方法三
利用学生好奇心,激发学习兴趣
正所谓兴趣是最好的老师,在小学数学教学活动开展的过程当中,我们可以充分的利用学生的好奇心,培养他们对数学的学习兴趣。好奇心指的是人们对于新鲜事物希望去展开探索过程的一种心理和行为倾向,是实现创造性思维过程的内部驱动力,与此同时当好奇心转化成为求知欲望的时候就会产生丰富的想象思维,有助于学生数学能力的提高。比如说在讲解三角形的内角和这一知识点的时候。
我们可以让学生提前准备好一个三角形,并且要求学生自己动手去量好每一个内角的度数,并记录下来。然后我们可以邀请一个学生随意报出自己所量的三角形任意两个内角的度数,教师就可以准确无误的回答出另外一个度数。刚开始的时候学生势必会产生怀疑,并产生强烈的好奇心“究竟老师是如何在那么短的时间内知道另外一个角的度数的呢?”通过这样的方式就可以有效地吸引学生的注意力,有助于帮助他们培养数学思维和良好的学习习惯。
列举事例形成数学表象,概括本质特征引出数学概念
具体事例选择的数量、质量及给出的时间直接影响学生形成清晰的表象,这是学生建立正确概念的关键。因此,首先要选择标准事例提供给学生,从而把概念的本质属性正确地、直接地、清晰地、鲜明地呈现在学生面前,形成清晰的表象,作为学生形成概念的基础。其次是分析事例,这是对事例逻辑加工过程,通过比较、类比、归纳和抽象事物的共同本质,最终使概念具体化。当学生对概念有了初步的正确认识,并对本质特征有了较深的理解时,为了更加明确概念的内涵和外延,可以适当选取一些正反事例来进行辨析,从而突出概念的本质属性。
通过变式观察等活动,有利于培养学生全面看问题的习惯。但是变式事例提供的不宜过多,给出的时间也不宜过早,这就需要教师要仔细推敲,慎重考虑,避免随意性。不能喧宾夺主,干扰清晰表象的形成。
数学思维能力对学生的学习具有潜在影响。培养学生的思维能力,题路是依据,学路是主体,教路是主导,三者要融为一体,达到最佳状态,才能收到理想的效果。而要达到上述目的,教师在课堂传授知识时,务必要抓住问题的关键循循善诱,启而有法,让学生积极去想,主动获取知识,提高思维能力。
在教学中,教师要结合教学内容尽可能地创设一些生动的教学情境,结合学生感兴趣并熟悉的事物,把生活中的数学生动地展现在课堂中,使学生眼中的数学不再是简单的数学,而是富有联系和相互连结的动感知识。教师简洁、清晰、富有逻辑性的导语提示,会以最佳状态引领学生思维逐步深入。
培养学生思维的深刻性、敏捷性、灵活性
教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。 数学思维的敏捷性主要反映了正确前提下的速度问题。运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。
数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。 为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。
2
数学思维方法一
解题过程中产生疑问,引出数学概念
教学过程是一种提出问题,解决问题不断持续的活动,因此教师可以提出一些难易程度适当的问题,引导学生积极思考,自主探究,在分析推理中发现问题,提出质疑,教师适时引入数学概念。
如此,学生不仅明确了概念引入的意义,同时强化了数学概念在解题过程中的重要地位。在这过程中,我们可以充分发挥学生的主观能动性,引导学生积极思考,大胆猜想,准确描述,有利于学生深刻地理解概念的实质,为概念的扩展及灵活运用打下良好的基础,同时培养学生思维的深刻性。
紧扣概念的本质,促成概念的串联与整合,形成概念的立体网络
通过新旧知识的广泛的、密切的联系,揭示了数学抽象的思维方式,扩大了知识的容量,使概念得到进一步巩固和深化,增加了知识的灵活运用能力,有利于数学结构化和系统化观念的形成。把相关概念结合起来形成一个知识网络体系,学生获得的概念一个个层层积累起来,教师要善于引导他们把相关知识纵横联在一起,使学生能站在某一个概念点上勾勒出立体概念网,形成整体认识。例如初中函数部分的教学,通过对生活中数量间的变化关系的认识,逐步形成函数的概念,再将一次函数、反比例函数、二次函数综合在一起,在充分掌握各函数的本质特征后,分析总结出它们之间的区别与联系,加深对函数概念的理解。
数学中的概念有些是互相联系,互相影响,相互依存的。要善于及时引导学生把有关概念归纳串联起来,融会贯通,充分揭示它们之间的内部规律,从而使学生对所学概念有个全面、系统的理解,有助于学生在解题时对数学问题的剖析,较能准确定位所要运用的数学概念。
3
数学思维方法二
开放问题,多方探索
在教学中。教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。有一道题目是:在1,3,5,6,9这一串数中,哪一个数与众不同?我提问学生后,一名学生站起来说:“6与众不同,因为这五个数中只有6不是奇数。如果把6换成7就有规律了。”我很满意这名学生的回答,于是补充说:“回答得很好,把6换成7后。这一串数就成了连续的奇数。而且每一个都比它前面的一个多2。这就是你们将来到中学要学习的等差数列。”此时,教室里活跃起来了,有同学站起来说:“老师,这一串数中,3,5,6,9都大于最小的质数2;
而1却小于2,所以说1与众不同。”又有同学说:“我发现,3与众不同,因为3是它前后两个相邻数的平均数。而其他的数都没有这个规律。”“1与众不同,因为l是奇数,而且是最小的奇数。”“6和其他的数不同,因为这五个数中,只有6才是2的倍数。”“这五个数中。能写成三个连续整数之积、和的只有6,这也能说明6和其余的数不同。”
创设问题情境
创设问题情境能够有效地激发学生的学习兴趣和强烈的思考欲望。思维能力是在学生主动、积极学习的基础上产生的,而主动、积极思维又源于学生对学习的兴趣。心理学研究表明,学生的思维总是由问题开始的,在解决问题中得到发展。
学生学习的过程本身就是一个不断创设问题情境,引起学生认知冲突,激发学生的求知欲,使学生的思维在问题思考与探索中得到促进和发展的过程。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的欲望,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。
4
数学思维方法三
利用学生好奇心,激发学习兴趣
正所谓兴趣是最好的老师,在小学数学教学活动开展的过程当中,我们可以充分的利用学生的好奇心,培养他们对数学的学习兴趣。好奇心指的是人们对于新鲜事物希望去展开探索过程的一种心理和行为倾向,是实现创造性思维过程的内部驱动力,与此同时当好奇心转化成为求知欲望的时候就会产生丰富的想象思维,有助于学生数学能力的提高。比如说在讲解三角形的内角和这一知识点的时候。
我们可以让学生提前准备好一个三角形,并且要求学生自己动手去量好每一个内角的度数,并记录下来。然后我们可以邀请一个学生随意报出自己所量的三角形任意两个内角的度数,教师就可以准确无误的回答出另外一个度数。刚开始的时候学生势必会产生怀疑,并产生强烈的好奇心“究竟老师是如何在那么短的时间内知道另外一个角的度数的呢?”通过这样的方式就可以有效地吸引学生的注意力,有助于帮助他们培养数学思维和良好的学习习惯。
列举事例形成数学表象,概括本质特征引出数学概念
具体事例选择的数量、质量及给出的时间直接影响学生形成清晰的表象,这是学生建立正确概念的关键。因此,首先要选择标准事例提供给学生,从而把概念的本质属性正确地、直接地、清晰地、鲜明地呈现在学生面前,形成清晰的表象,作为学生形成概念的基础。其次是分析事例,这是对事例逻辑加工过程,通过比较、类比、归纳和抽象事物的共同本质,最终使概念具体化。当学生对概念有了初步的正确认识,并对本质特征有了较深的理解时,为了更加明确概念的内涵和外延,可以适当选取一些正反事例来进行辨析,从而突出概念的本质属性。
通过变式观察等活动,有利于培养学生全面看问题的习惯。但是变式事例提供的不宜过多,给出的时间也不宜过早,这就需要教师要仔细推敲,慎重考虑,避免随意性。不能喧宾夺主,干扰清晰表象的形成。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询