这两道题怎么做?高中数学推理与证明
1个回答
展开全部
第一题:
①当n=1时,1+n/2=1.5,1+1/2+1/3+……+1/2^n=1.5,1/2+n=1.5,该式成立.
②假设n=k时该式成立,可得:(1+1/2+1/3+.+1/2^k)-(1+k/2)≥0,(1/2+k)-(1+1/2+1/3+.+1/2^k)≥0.
求证n=k+1时该式也成立.
③n=k+1时,原式的三项分别为1+(k+1)/2=1+k/2+1/2;1+1/2+1/3+.+1/2^(k+1)=1+1/2+1/3+.+1/2^k+1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k);1/2+k+1
两个≥号分别证明.
第一个≥号的证明:
1+1/2+1/3+.+1/2^k+1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)-(1+k/2+1/2)=(1+1/2+1/3+.+1/2^k-(1+k/2))+(1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)-1/2)
前一个括号里自然≥0;只要算后一个括号里即可:
显然,1/(2^k+1)>1/(2^k+2)>1/(2^k+3)>……>1/(2^k+2^k),且共有2^k项,所以1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)>1/(2^k+2^k)*2^k,即1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)>1/2,则第二个括号里>0,加起来自然≥0.
第二个≥号的证明:
1/2+k+1-(1+1/2+1/3+.+1/2^(k+1)=1+1/2+1/3+.+1/2^k+1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k))=(1/2+k-(1+1/2+1/3+.+1/2^(k+1)=1+1/2+1/3+.+1/2^k))+(1-(1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)))
同上,第一个括号里自然≥0;只要算后一个括号里即可:显然,1/(2^k+1)>1/(2^k+2)>1/(2^k+3)>……>1/(2^k+2^k),且共有2^k项,所以1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)
第二题:
证明:n=1时,(1+x)^1=1+x;
假设n=k时,不等式成立,即(1+x)^k>=1+kx.则当n=k+1时,
(1+x)^(k+1)=[(1+x)^k](1+x)>=(1+kx)(1+x)=1+(k+1)x+kx^2>1+(k+1)x
从而不等式对n=k+1成立.
有归纳法原理,不等式得证.
①当n=1时,1+n/2=1.5,1+1/2+1/3+……+1/2^n=1.5,1/2+n=1.5,该式成立.
②假设n=k时该式成立,可得:(1+1/2+1/3+.+1/2^k)-(1+k/2)≥0,(1/2+k)-(1+1/2+1/3+.+1/2^k)≥0.
求证n=k+1时该式也成立.
③n=k+1时,原式的三项分别为1+(k+1)/2=1+k/2+1/2;1+1/2+1/3+.+1/2^(k+1)=1+1/2+1/3+.+1/2^k+1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k);1/2+k+1
两个≥号分别证明.
第一个≥号的证明:
1+1/2+1/3+.+1/2^k+1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)-(1+k/2+1/2)=(1+1/2+1/3+.+1/2^k-(1+k/2))+(1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)-1/2)
前一个括号里自然≥0;只要算后一个括号里即可:
显然,1/(2^k+1)>1/(2^k+2)>1/(2^k+3)>……>1/(2^k+2^k),且共有2^k项,所以1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)>1/(2^k+2^k)*2^k,即1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)>1/2,则第二个括号里>0,加起来自然≥0.
第二个≥号的证明:
1/2+k+1-(1+1/2+1/3+.+1/2^(k+1)=1+1/2+1/3+.+1/2^k+1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k))=(1/2+k-(1+1/2+1/3+.+1/2^(k+1)=1+1/2+1/3+.+1/2^k))+(1-(1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)))
同上,第一个括号里自然≥0;只要算后一个括号里即可:显然,1/(2^k+1)>1/(2^k+2)>1/(2^k+3)>……>1/(2^k+2^k),且共有2^k项,所以1/(2^k+1)+1/(2^k+2)+1/(2^k+3)+……+1/(2^k+2^k)
第二题:
证明:n=1时,(1+x)^1=1+x;
假设n=k时,不等式成立,即(1+x)^k>=1+kx.则当n=k+1时,
(1+x)^(k+1)=[(1+x)^k](1+x)>=(1+kx)(1+x)=1+(k+1)x+kx^2>1+(k+1)x
从而不等式对n=k+1成立.
有归纳法原理,不等式得证.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询