在数学分析中,逐点收敛和一致收敛的区别是什么?
1个回答
展开全部
fn一致收敛到f:对于任意的e>0,存在一个N>0,使对于任意的x在定义域和n>N, |f(x)-fn(x)|<e
fn逐点收敛到f:对于任意的e>0,对于任意的x在定义域,存在一个N_x>0,使任意的和n>N_x, |f(x)-fn(x)|<e
这里注意到,我在逐点收敛的N上标了一个下标x,表示N和x是有关系的。而一致收敛的N是先取的,是对所有x都适用的。这个就是最大的区别:
逐点收敛指在每个点,函数值fn(x)都收敛到f(x),但是不同点收敛快慢可能不一样。
一致收敛指所有fn(x)大约“同步”地收敛到整个f(x)。
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
如果问题解决后,请点击下面的“选为满意答案”
学习高等数学最重要是持之以恒,其实无论哪种科目都是的,除了多书里的例题外,平时还要多亲自动手做练习,每种类型和每种难度的题目都挑战一番,不会做的也不用气馁,多些向别人请教,从别人那里学到的知识就是自己的了,然后再加以自己钻研的话一定会有不错的效果。所以累积经验是很重要的,最好的方法就是常来帮别人解答题目,增加历练和做题经验了!
fn逐点收敛到f:对于任意的e>0,对于任意的x在定义域,存在一个N_x>0,使任意的和n>N_x, |f(x)-fn(x)|<e
这里注意到,我在逐点收敛的N上标了一个下标x,表示N和x是有关系的。而一致收敛的N是先取的,是对所有x都适用的。这个就是最大的区别:
逐点收敛指在每个点,函数值fn(x)都收敛到f(x),但是不同点收敛快慢可能不一样。
一致收敛指所有fn(x)大约“同步”地收敛到整个f(x)。
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
如果问题解决后,请点击下面的“选为满意答案”
学习高等数学最重要是持之以恒,其实无论哪种科目都是的,除了多书里的例题外,平时还要多亲自动手做练习,每种类型和每种难度的题目都挑战一番,不会做的也不用气馁,多些向别人请教,从别人那里学到的知识就是自己的了,然后再加以自己钻研的话一定会有不错的效果。所以累积经验是很重要的,最好的方法就是常来帮别人解答题目,增加历练和做题经验了!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |