∫f(x)sinxdx =∫f(x)cosxdx = 0,积分限0-π,则f(x)在0→π有两个零
∫f(x)sinxdx=∫f(x)cosxdx=0,积分限0-π,则f(x)在0→π有两个零点...
∫f(x)sinxdx =∫f(x)cosxdx = 0,积分限0-π,则f(x)在0→π有两个零点
展开
展开全部
f(x)sinxdx =0,∫f(x)cosxdx =0 (0,π)
let
y = π-x
dy = -dx
∫f(x)cosxdx =0 (0,π)
∫f(π-y)cosy(-dy) =0 (π,0)
∫f(π-x)cosxdx =0 (0,π)
=> ∫ (f(π-x) - f(x) ) cosx =0 (0,π)
similarly
∫ (f(π-x) - f(x) ) sinx =0 (0,π)
(0,派)内f(x)至少有两个零点.
let
y = π-x
dy = -dx
∫f(x)cosxdx =0 (0,π)
∫f(π-y)cosy(-dy) =0 (π,0)
∫f(π-x)cosxdx =0 (0,π)
=> ∫ (f(π-x) - f(x) ) cosx =0 (0,π)
similarly
∫ (f(π-x) - f(x) ) sinx =0 (0,π)
(0,派)内f(x)至少有两个零点.
追问
请解释similarly下面的意思
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询