三点求圆心,具体简单公式,怎么算
展开全部
解答过程如下:
假设平面上的三个点为(x1,y1) ,(x2,y2), (x3,y3)。
圆的公式是:x^2+y^2+Dx+Ey+F=0。
把(x1,y1)、 (x2,y2)、 (x3,y3) 代入公式可以算出D、E、F。
再把D、E、F代进 x^2+y^2+Dx+Ey+F=0。
又因为(x-a)^2+(y-b)^2=r^2。
可得:r=二分之一倍根号下(D方+E方-4F)。
所以圆心坐标为(-D/2,-E/2)。
扩展资料:
空间坐标的求圆的方程,也跟直角坐标系的一样,主要是求出圆心。
1、从已知3个坐标二个点可以弄一条直线,求出二条直线方程。
2、再分别求这二条直线的垂直平均线。
3、再二条垂直平均线的交点——圆心。
4、圆心和其中已知的坐标的距离就是半径。
5、最后化成圆的方程(空间坐标的求圆的方程也是一样)。
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |