如何利用Caffe训练ImageNet分类网络
展开全部
训练配置:batchsize=128
caffe自有的imagenet with cuDNN模型快于googlenet with cuDNN
VGG16层不用cuDNN慢于caffe自有的imagenet with cuDNN模型
VGG19层不用cuDNN慢于caffe自有的imagenet with cuDNN模型
一、CAFFE 自带配置,使用cuDNN
Forward速度 : 220ms
Backward速度 :360ms
二、CAFFE 自带配置,不使用cuDNN
Forward速度 : 300ms
Backward速度 :410ms
三、GoogleNet,使用cuDNN
Forward速度 : 614ms
Backward速度 :1377ms
四、GoogleNet,不使用cuDNN
Forward速度 : 1145ms
Backward速度 :2009ms
五、VGG16层,使用cuDNN
Forward速度 : 3101ms
Backward速度 :8002ms
六、VGG19层,使用cuDNN
Forward速度 : 3972ms
Backward速度 :8540ms
回答不容易,希望能帮到您,满意请帮忙采纳一下,谢谢 !
caffe自有的imagenet with cuDNN模型快于googlenet with cuDNN
VGG16层不用cuDNN慢于caffe自有的imagenet with cuDNN模型
VGG19层不用cuDNN慢于caffe自有的imagenet with cuDNN模型
一、CAFFE 自带配置,使用cuDNN
Forward速度 : 220ms
Backward速度 :360ms
二、CAFFE 自带配置,不使用cuDNN
Forward速度 : 300ms
Backward速度 :410ms
三、GoogleNet,使用cuDNN
Forward速度 : 614ms
Backward速度 :1377ms
四、GoogleNet,不使用cuDNN
Forward速度 : 1145ms
Backward速度 :2009ms
五、VGG16层,使用cuDNN
Forward速度 : 3101ms
Backward速度 :8002ms
六、VGG19层,使用cuDNN
Forward速度 : 3972ms
Backward速度 :8540ms
回答不容易,希望能帮到您,满意请帮忙采纳一下,谢谢 !
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询