这个怎么证明,求各位帮忙
1个回答
展开全部
证明:
显然:
∫(0,π) f(sinx)dx = ∫(0,π/2) f(sinx)dx +∫(π/2,π) f(sinx)dx
对于∫(0,π/2) f(sinx)dx,令:
x=π/2 - t,则:
dx = -dt
于是:
∫(0,π/2) f(sinx)dx
= - ∫(π/2,0) f[sin(π/2 - t)] dt
=∫(0,π/2) f(cost)dt
对于∫(π/2,π) f(sinx)dx
令:
x=π/2 + m,则:
dx=dm
∫(π/2,π) f(sinx)dx
=∫(0,π/2) f[sin(π/2 + m)]dm
=∫(0,π/2) f(cosm)dm
因此:
∫(0,π) f(sinx)dx = ∫(0,π/2) f(cost)dt+∫(0,π/2) f(cosm)dm
被积函数于其表示字母无关,因此,上式中,t,m都换成x,则:
∫(0,π) f(sinx)dx = ∫(0,π/2) f(cosx)dx+∫(0,π/2) f(cosx)dx = 2∫(0,π/2) f(cosx)dx
显然:
∫(0,π) f(sinx)dx = ∫(0,π/2) f(sinx)dx +∫(π/2,π) f(sinx)dx
对于∫(0,π/2) f(sinx)dx,令:
x=π/2 - t,则:
dx = -dt
于是:
∫(0,π/2) f(sinx)dx
= - ∫(π/2,0) f[sin(π/2 - t)] dt
=∫(0,π/2) f(cost)dt
对于∫(π/2,π) f(sinx)dx
令:
x=π/2 + m,则:
dx=dm
∫(π/2,π) f(sinx)dx
=∫(0,π/2) f[sin(π/2 + m)]dm
=∫(0,π/2) f(cosm)dm
因此:
∫(0,π) f(sinx)dx = ∫(0,π/2) f(cost)dt+∫(0,π/2) f(cosm)dm
被积函数于其表示字母无关,因此,上式中,t,m都换成x,则:
∫(0,π) f(sinx)dx = ∫(0,π/2) f(cosx)dx+∫(0,π/2) f(cosx)dx = 2∫(0,π/2) f(cosx)dx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询