展开全部
解:用分部积分法求解。
∵∫ln(x+1)dx/(x+2)^2=-∫ln(x+1)d[1/(x+2)]=-ln(x+1)/(x+2)+∫dx/[(x+1)(x+2)]=-ln(x+1)/(x+2)+∫dx/[1/(x+1)-1/(x+2)]=-ln(x+1)/(x+2)+ln丨(x+1)/(x+2)丨+C,
∴原式=[-ln(x+1)/(x+2)+ln丨(x+1)/(x+2)丨]丨(x=0,1)=(5/3)ln2-ln3。
供参考。
∵∫ln(x+1)dx/(x+2)^2=-∫ln(x+1)d[1/(x+2)]=-ln(x+1)/(x+2)+∫dx/[(x+1)(x+2)]=-ln(x+1)/(x+2)+∫dx/[1/(x+1)-1/(x+2)]=-ln(x+1)/(x+2)+ln丨(x+1)/(x+2)丨+C,
∴原式=[-ln(x+1)/(x+2)+ln丨(x+1)/(x+2)丨]丨(x=0,1)=(5/3)ln2-ln3。
供参考。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询