这道高中数学题,怎么化简的
3个回答
展开全部
公式:2sinAsinB=cos(A-B)-cos(A+B)
(1). f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)
=cos2xcos(π/3)+sin2xsin(π/3)+cos(π/2)-cos2x
=(1/2)cos2x+(√3/2)sin2x+0-cos2x
=-(1/2)cos2x+(√3/2)sin2x
=-[cos2xcos(π/3)-sin2xsin(π/3)]
=-cos(2x+π/3)=-sin[π/2-(2x+π/3)]
=-sin(π/6-2x)=sin(2x-π/6)
故最小正周期T=2π/2=π;
对称轴:由2x-π/6=π/2+2kπ;得对称轴x=π/3+kπ(k∈Z);
(2). f(x)在[-π/12,π/2]上的值域。
【用五点作图法,能很快确定其值域】
x=-π/12时f(-π/12)=sin(-π/6-π/6)=sin(-π/3)=-√3/2;
x=π/3时f(π/3)=sin(2π/3-π/6)=sin(π/2)=1;
∴f(x)在[-π/12,π/2]上的值域为[-√3/2,1].
(1). f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)
=cos2xcos(π/3)+sin2xsin(π/3)+cos(π/2)-cos2x
=(1/2)cos2x+(√3/2)sin2x+0-cos2x
=-(1/2)cos2x+(√3/2)sin2x
=-[cos2xcos(π/3)-sin2xsin(π/3)]
=-cos(2x+π/3)=-sin[π/2-(2x+π/3)]
=-sin(π/6-2x)=sin(2x-π/6)
故最小正周期T=2π/2=π;
对称轴:由2x-π/6=π/2+2kπ;得对称轴x=π/3+kπ(k∈Z);
(2). f(x)在[-π/12,π/2]上的值域。
【用五点作图法,能很快确定其值域】
x=-π/12时f(-π/12)=sin(-π/6-π/6)=sin(-π/3)=-√3/2;
x=π/3时f(π/3)=sin(2π/3-π/6)=sin(π/2)=1;
∴f(x)在[-π/12,π/2]上的值域为[-√3/2,1].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询