求此题答案及过程。
展开全部
(1)
√(1+sin2)-√(1-sin2)
=√(sin²1+cos²1+2sin1cos1)-√(sin²1+cos²1-2sin1cos1)
=√(sin1+cos1)²-√(sin1-cos1)²
=(sin1+cos1)-(sin1-cos1)
=2cos1
(2)
√(1+cos2)-√(1-cos2)
=√(2cos²1)-√(2sin²1)
=√2cos1-√2sin1
(3)
(sin7°+cos15°sin8°)/(cos7°-sin15°sin8°)
=[sin(15°-8°)+cos15°sin8°]/[cos(15°-8°)-sin15°sin8°]
=(sin15°cos8°-cos15°sin8°+cos15°sin8°)/(cos15°cos8°+sin15°sin8°-sin15°sin8°)
=(sin15°cos8°)/(cos15°cos8°)
=tan15°
=2-√3
√(1+sin2)-√(1-sin2)
=√(sin²1+cos²1+2sin1cos1)-√(sin²1+cos²1-2sin1cos1)
=√(sin1+cos1)²-√(sin1-cos1)²
=(sin1+cos1)-(sin1-cos1)
=2cos1
(2)
√(1+cos2)-√(1-cos2)
=√(2cos²1)-√(2sin²1)
=√2cos1-√2sin1
(3)
(sin7°+cos15°sin8°)/(cos7°-sin15°sin8°)
=[sin(15°-8°)+cos15°sin8°]/[cos(15°-8°)-sin15°sin8°]
=(sin15°cos8°-cos15°sin8°+cos15°sin8°)/(cos15°cos8°+sin15°sin8°-sin15°sin8°)
=(sin15°cos8°)/(cos15°cos8°)
=tan15°
=2-√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询