kmeans算法用Python怎么实现
1个回答
展开全部
k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。
1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等
2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,另一种是随机选择数据中的点。这些点的选择会很大程度上影响到最终的结果,也就是说运气不好的话就到局部最小值去了。这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means)
3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去。完成后我们则需要将每个簇算出平均值,用这个点作为新的质心。反复重复这两步,直到收敛我们就得到了最终的结果。
1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等
2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,另一种是随机选择数据中的点。这些点的选择会很大程度上影响到最终的结果,也就是说运气不好的话就到局部最小值去了。这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means)
3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去。完成后我们则需要将每个簇算出平均值,用这个点作为新的质心。反复重复这两步,直到收敛我们就得到了最终的结果。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询