首先利用勾股定理:b^2=c^2-a^2求出b的长度,然后利用正弦定理b/(sinB)=c/(sin90)得出sinB的值,最后得sinB=((c^2-a^2)开根号)/c,就能求得所需的值。
扩展资料:
直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
第一种方法可以称为 “同径法
”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法
”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。
纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。
18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。
第二种方法为“外接圆法”,最早为16世纪法国数学家韦达所采用。韦达没有讨论钝角三角形的情形,后世数学家对此作了补充。
参考资料:百度百科--正弦定理百度百科--勾股定理
2024-09-18 广告
首先利用勾股定理:b^2=c^2-a^2求出b的长度,然后利用正弦定理b/(sinB)=c/(sin90)得出sinB的值,最后得sinB=((c^2-a^2)开根号)/c,就能求得所需的值。
或者cosB=a/c(最简单的)或者勾股定理:b^2=c^2-a^2,余弦定理:b^2=c^2+a^2-2accosB,得cosB=a/c。得到B=arccosa/c。
扩展资料
直角三角形的判定方法:
判定1:有一个角为90°的三角形是直角三角形。
判定2:若a^2+b^2=c^2,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么这个三角形为直角三角形。
扩展资料:
直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
第一种方法可以称为 “同径法”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。
纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。
18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。
第二种方法为“外接圆法”,最早为16世纪法国数学家韦达所采用。韦达没有讨论钝角三角形的情形,后世数学家对此作了补充。
参考资料:百度百科--正弦定理百度百科--勾股定理
正弦定理:b/(sinB)=c/(sin90)
得sinB=((c^2-a^2)开根号)/c
或者
cosB=a/c(最简单的)
或者
勾股定理:b^2=c^2-a^2
余弦定理:b^2=c^2+a^2-2accosB
得cosB=a/c
广告 您可能关注的内容 |