如何判断一个函数的奇偶性?一共有几种方法?

 我来答
帐号已注销
2020-03-05 · TA获得超过1.6万个赞
知道答主
回答量:11.7万
采纳率:4%
帮助的人:6167万
展开全部
科普小星球
高粉答主

2019-05-14 · 看世间繁华,学科学道理。
科普小星球
采纳数:325 获赞数:135995

向TA提问 私信TA
展开全部

判断函数的奇偶性共有四种方法。

1、定义法:

利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数。

2、求和(差)法:

若f(x)-f(-x)=2f(x),则f(x)为奇函数。

若f(x)+f(-x)=2f(x),则f(x)为偶函数。

3、用求商法判断

若f(-x)/f(x)=-1,(f(x)≠0)则f(x)为奇函数。

若f(-x)/f(x)=1,(f(x)≠0)则f(x)为偶函数。

4、图像判断法:

奇函数的图像关于原点中心对称,而偶函数的图像关于Y轴轴对称

注意:

如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0。

注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数。

扩展资料

验证一个函数的奇偶性的前提要求函数的定义域必须关于原点对称。但由单调性不能倒导其奇偶性。

奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。

偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。

参考资料来源:百度百科-函数奇偶性

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
惊鸿一剑飘
推荐于2019-08-30 · TA获得超过1万个赞
知道大有可为答主
回答量:1424
采纳率:100%
帮助的人:646万
展开全部
1、奇函数、偶函数的定义中,首先函数定义域D关于原点对称。它们的图像特点是:奇函数的图像关于原点对称,偶函数的图像关于X轴对称。即f(-x)=-f(x)为奇函数,f(-x)=f(x)为偶函数
2、判断函数的奇偶性大致有下列二种方法:
  (1)用奇、偶函数的定义,主要考察f(-x)是否与-f(x) ,f(x) ,相等。
  (2)利用一些已知函数的奇偶性及下列准则:两个奇函数的代数和是奇函数;两个偶函数的代数和是偶函数;奇函数与偶函数的和既非奇函数,也非偶函数;两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;奇函数与偶函数的乘积是奇函数。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式