求矩阵方程的解。有详细过程

 我来答
韩沐飞111
2018-05-20 · TA获得超过6405个赞
知道答主
回答量:34
采纳率:0%
帮助的人:5486
展开全部

1、初等变换法:有固定方法,设方程的系数矩阵为A,未知数矩阵为X,常数矩阵为B,即AX=B,要求X,则等式两端同时左乘A^(-1),有X=A^(-1)B。又因为(A,E)~(E,A^(-1)),所以可用初等行变换求A^(-1),从而所有未知数都求出来了。

2、逆矩阵求解法:求解方法:容易算出已知矩阵的行列式等于-1。然后计算伴随阵,具体方法是对于编号为mn的元素,划去原阵的第m行和第n列,原阵退化为n-1阶矩阵,求出这个n-1阶阵的行列式,然后填入伴随阵的第n行第m列位置,最后乘以-1的m+n次幂。下面是做法:

拓展资料:初等变换。

一般采用消元法来解线性方程组,而消元法实际上是反复对方程进行变换,而所做的变换也只是以下三种基本的变换所构成:

(1)用一非零的数乘以某一方程

(2)把一个方程的倍数加到另一个方程

(3)互换两个方程的位置

于是,将变换(1)、(2)、(3)称为线性方程组的初等变换。

落下卉5730
2018-04-18 · TA获得超过3431个赞
知道大有可为答主
回答量:3161
采纳率:91%
帮助的人:619万
展开全部


如图

追问

为什么按照这样的顺序?
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式