求矩阵方程的解。有详细过程
2个回答
展开全部
1、初等变换法:有固定方法,设方程的系数矩阵为A,未知数矩阵为X,常数矩阵为B,即AX=B,要求X,则等式两端同时左乘A^(-1),有X=A^(-1)B。又因为(A,E)~(E,A^(-1)),所以可用初等行变换求A^(-1),从而所有未知数都求出来了。
2、逆矩阵求解法:求解方法:容易算出已知矩阵的行列式等于-1。然后计算伴随阵,具体方法是对于编号为mn的元素,划去原阵的第m行和第n列,原阵退化为n-1阶矩阵,求出这个n-1阶阵的行列式,然后填入伴随阵的第n行第m列位置,最后乘以-1的m+n次幂。下面是做法:
拓展资料:初等变换。
一般采用消元法来解线性方程组,而消元法实际上是反复对方程进行变换,而所做的变换也只是以下三种基本的变换所构成:
(1)用一非零的数乘以某一方程
(2)把一个方程的倍数加到另一个方程
(3)互换两个方程的位置
于是,将变换(1)、(2)、(3)称为线性方程组的初等变换。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询