2个回答
展开全部
②换元x=tanu,dx=sec²udu
=∫√(ln(tanu+secu)+5)*secudu
=∫(ln(tanu+secu)+5)^(1/2)d(ln(tanu+secu)+5)
=(2/3)(ln(tanu+secu)+5)^(3/2)+C
③=∫√x(x+1)(√(x+1)-√x)dx
=∫(x+1)√x-(x+1-1)√(x+1)dx
=∫x^(3/2)+x^(1/2)-(x+1)^(3/2)+(x+1)^(1/2)dx
=(2/5)(x^(5/2)-(x+1)^(5/2))+(2/3)(x^(3/2)+(x+1)^(3/2))+C
④=∫u/sin³udcosu
=-∫ucsc²udu
=∫udcotu
=ucotu-∫cotudu
=ucotu-lnsinu+C
=∫√(ln(tanu+secu)+5)*secudu
=∫(ln(tanu+secu)+5)^(1/2)d(ln(tanu+secu)+5)
=(2/3)(ln(tanu+secu)+5)^(3/2)+C
③=∫√x(x+1)(√(x+1)-√x)dx
=∫(x+1)√x-(x+1-1)√(x+1)dx
=∫x^(3/2)+x^(1/2)-(x+1)^(3/2)+(x+1)^(1/2)dx
=(2/5)(x^(5/2)-(x+1)^(5/2))+(2/3)(x^(3/2)+(x+1)^(3/2))+C
④=∫u/sin³udcosu
=-∫ucsc²udu
=∫udcotu
=ucotu-∫cotudu
=ucotu-lnsinu+C
追问
后面三问我都看懂了,非常感谢!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询