y''+2y'+y=tanx 急求这道关于常系数非齐次线性微分方程的解题过程。谢
2个回答
2018-07-09
展开全部
(1)y”+3y’+2y=xe^-x
特解 y*=ax+b(这是错的,最起码得有个e^-x吧?)
(2)y”+3y’+2y=(x² + 1)e^-x
特解y*=x(Ax²+Bx+c)e^-x
-------------------------------
1、xe^-x前的多项式为x,所以设Qm(x)是Qm(x)=ax+b,由于-1是特征方程的单根,所以特解为
y*=x(ax+b)e^(-x)
2、(x²+1)e^-x前的多项式为二次,所以设Qm(x)是Qm(x)=ax²+bx+c,由于-1是特征方程的单根,所以特解为y*=x(ax²+bx+c)e^-x
把特解带入原微分方程,待定系数法求出参数a、b、c。
特解 y*=ax+b(这是错的,最起码得有个e^-x吧?)
(2)y”+3y’+2y=(x² + 1)e^-x
特解y*=x(Ax²+Bx+c)e^-x
-------------------------------
1、xe^-x前的多项式为x,所以设Qm(x)是Qm(x)=ax+b,由于-1是特征方程的单根,所以特解为
y*=x(ax+b)e^(-x)
2、(x²+1)e^-x前的多项式为二次,所以设Qm(x)是Qm(x)=ax²+bx+c,由于-1是特征方程的单根,所以特解为y*=x(ax²+bx+c)e^-x
把特解带入原微分方程,待定系数法求出参数a、b、c。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询