学python可以做什么
1WEB开发
在国内,豆瓣一开始就使用Python作为web开发基础语言,知乎的整个架构也是基于Python语言,这使得web开发这块在国内发展的很不错。
尽管目前Python并不是做Web开发的首选,但一直都占有不可忽视的一席。Python中有各类Web框架,无论是简单而可以自由搭配的微框架还是全功能的大型MVC框架都一应俱全,这在需要敏捷开发的Web项目中也是十分具有优势的。广泛使用(或曾经广泛使用)Python提供的大型Web服务包括知乎、豆瓣、Dropbox等网站。加之Python本身的“胶水”特性,很容易实现在需要大规模性能级计算时整合其它语言,同时保留Web开发时的轻便快捷。
除此之外,Python中还有大量“开箱即用”的模块,用于与各种其它网站的对接等相关功能。如果希望开发个微信公众号相关功能,wechat-sdk/weixin-python等包,能够使你几乎完全不用管文档中提及的各种服务器交互细节,专注于功能实现即能完成开发。
目前,国内的Python web开发主要有两个技术栈:
(1)Django
Django是一个高级的敏捷web开发框架,如果学会了,撸一个网站很快。当然如果纯粹比撸网站的速度,基于ruby的Ruby on rails显然更快,但是Django有一个优势就是性能优秀,更适合国内网站的应用场景。国外的著名图片社区Pinterest早期也是基于Django开发的,承受了用户快速增长的冲击。所以说如果你想快速开发一个网站,还能兼顾APP客户端的API调用需求,Django是可以信赖的。
(2)Flask
相对于Django,Flask则是一个轻量级的web框架,Flask的最大的优势是性能优越,适合配合手机客户端开发后台API服务。国内基于Flask的Restful API服务这快很火,也是需求最大的。知名的比如百度、网易、小米、陌陌等等很多公司都有基于Flask的应用部署。当然,如果你想做一个传统的web网站,还是建议使用Django,Flask的优势是后端、API,不适合构建全功能网站。
2网络爬虫
网络爬虫是Python比较常用的一个场景,国际上,google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上的信息比以前容易很多了。
Python在这个方面有许多工具上的积累,无论是用于模拟HTTP请求的Requests、用于HTML DOM解析的PyQuery/BeautifulSoup、用于自动化分布式爬取任务的Scrapy,还是用于最简化数据库访问的各种ORM,都使得Python成为数据爬取的首选语言之一。特别是,爬取后的数据分析与计算是Python最为擅长的领域,非常容易整合。目前Python比较流行的网络爬虫框架是功能非常强大的scrapy。
3人工智能与机器学习
人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?
因为Python足够动态、具有足够性能,这是AI技术所需要的技术特点。比如基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。
早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。
而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。
值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。
4数据分析处理
数据分析处理方面,Python有很完备的生态环境。“大数据”分析中涉及到的分布式计算、数据可视化、数据库操作等,Python中都有成熟的模块可以选择完成其功能。对于Hadoop-MapReduce和Spark,都可以直接使用Python完成计算逻辑。这无论对于数据科学家还是对于数据工程师而言都是十分便利的。
5服务器运维及其它小工具
Python对于服务器运维而言也有十分重要的用途。由于目前几乎所有Linux发行版中都自带了Python解释器,使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。Python中也包含许多方便的工具,从调控ssh/sftp用的paramiko,到监控服务用的supervisor,再到bazel等构建工具,甚至conan等用于C++的包管理工具,Python提供了全方位的工具集合,而在这基础上,结合Web,开发方便运维的工具会变得十分简单。
更有意思的是,Python社区的开发者们还制作了诸如itchat这样的开发工具包,你大可以用微信来管理服务器或是各种服务的运行。想想看,一个微信机器人,能够在出现异常时,又或者每天固定时刻汇报服务器或是程序运行情况,甚至包含用matplotlib/seaborn绘制的图表,一目了然,而你对它发上简简单单一句话,即可完成对服务器的调整。
想学的童鞋可以加企鹅裙前三位是227,中间是435,后三位是450可以 视频资料免费分享交流经验和讲解行情
6桌面程序
Python也可以用于桌面软件开发(如sublime text等),甚至移动端开发(参看kivy)。Python简洁方便,各种工具包齐全的环境,能大幅度减少开发者的负担。著名的UI框架QT有Python语言的实现版本PyQT。Python简单易用的特性加上QT的优雅,可以很轻松的开发界面复杂的桌面程序,并且能轻松实现跨平台特性。
7多媒体应用
可以用Python里面的PIL、Piddle、ReportLab 等模块对图象、声音、视频、动画等进行处理,还可以用Python生成动态图表和统计分析图表。另外,还可以利用PyOpenGl模块非常快速有效的编写出三维场景。
Python是一种计算机程序设计语言,又被为胶水语言,可以用混合编译的方式使用c/c++/java等语言的库。
你可能已经听说过很多种流行的编程语言,比如在大学里感觉非常难学的C语言,进入社会非常流行的Java语言,以及适合初学者的Basic语言,非常适合网页编程的Java语言等,Python是他们其中的一种。
Python可以做什么?
1)网站后端程序员:使用它单间网站,后台服务比较容易维护。如:Gmail、Youtube、知乎、豆瓣
2)自动化运维:自动化处理大量的运维任务
3)数据分析师:快速开发快速验证,分析数据得到结果
4)游戏开发者:一般是作为游戏脚本内嵌在游戏中
5)自动化测试:编写为简单的实现脚本,运用在Selenium/lr中,实现自动化。
6)网站开发:借助django,flask框架自己搭建网站。
7)爬虫获取或处理大量信息:批量下载美剧、运行投资策略、爬合适房源、系统管理员的脚本任务等。
具体日常比如自动备份你的MP3;还有可以做网站,很多著名的网站像知乎、YouTube就是
Python写的;也可以做网络游戏的后台,很多在线游戏的后台都是Python开发的。
而Python又是人工智能开发的主流语言,学习Python可以做人工智能工程师。python开发工程师、python高级工程师、Web网站开发工程师、Python自动化测试、Linux运维工程师、python游戏开发工程师、python技术经理、python开发实习等职业选择。如果你也是学习Python的话可以关主威❤工宗号:程序员大牛!每天分享干货!
别人用Python做了什么
你可能会在想,在现实世界里别人都用Python开发了什么东西呢。那么首先我们先迅速看一下其中一些大的技术公司是怎么使用这门语言的。
Google这家公司从一开始就使用Python了,而且在这家技术巨头的主要服务器端语言阵营中赢得了一席之地。Python的仁慈的独裁者Guido van Rossum甚至还在那里待过几年,负责监管这门语言的开发工作。
Instagram喜欢Python是因为它的简洁。这项服务以运行着“全世界最大的Django web框架部署”著称。而Django完全是用Python写出来的。
Spotify将这么语言用到数据分析和后端服务上。据他们的团队说,Python的易用让他们拥有了一条超快的开发渠道。Spotify要进行海量分析来给用户提供推荐,所以他们需要一个简单又好用的东西。Python正好是救兵!
你还可以看看这篇文章去了解其他公司都用Python干什么。如果你已经被说服的话,我们就开始吧!
2018-11-12 · 百度认证:北京一天天教育科技有限公司官方账号,教育领域创作者
用 Python 写爬虫的教程网上一抓一大把,据我所知很多初学 Python 的人都是使用它编写爬虫程序。小到抓取一个小黄图网站,大到一个互联网公司的商业应用。通过 Python 入门爬虫比较简单易学,不需要在一开始掌握太多太基础太底层的知识就可以很快上手,而且很快可以做出成果,非常适合小白一开始想做出点看得见的东西的成就感。
除了入门,爬虫也被广泛应用到一些需要数据的公司、平台和组织,通过抓取互联网上的公开数据,来实现一些商业价值是非常常见的做法。当然这些选手的爬虫就要厉害的多了,需要处理包括路由、存储、分布式计算等很多问题,与小白的抓黄图小程序,复杂度差了很多倍。
Web 程序
除了爬虫,Python 也广泛应用到了 Web 端程序,比如你现在正在使用的知乎,主站后台就是基于 Python 的 tornado 框架,豆瓣的后台也是基于 Python。除了 tornado (Tornado Web Server),Python 常用的 Web 框架还有 Flask(Welcome | Flask (A Python Microframework)),Django (The Web framework for perfectionists with deadlines) 等等。通过上述框架,你可以很方便实现一个 Web 程序,比如我认识的一些朋友,就通过 Python 自己编写了自己的博客程序,包括之前的 zhihu.photo,我就是通过 Flask 实现的后台(出于版权等原因,我已经停掉了这个网站)。除了上述框架,你也可以尝试自己实现一个 Web 框架。
桌面程序
Python 也有很多 UI 库,你可以很方便地完成一个 GUI 程序(话说我最开始接触编程的时候,就觉得写 GUI 好炫酷,不过搞了好久才在 VC6 搞出一个小程序,后来又辗转 Delphi、Java等,最后接触到 Python 的时候,我对 GUI 已经不感兴趣了)。Python 实现 GUI 的实例也不少,包括大名鼎鼎的 Dropbox,就是 Python 实现的服务器端和客户端程序。
人工智能(AI)与机器学习
人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?因为Python足够动态、具有足够性能,这是AI技术所需要的技术特点。比如基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。
机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。
早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。
而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。
值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。
科学计算
Python 的开发效率很高,性能要求较高的模块可以用 C 改写,Python 调用。同时,Python 可以更高层次的抽象问题,所以在科学计算领域也非常热门。包括 scipy、numpy 等用于科学计算的第三方库的出现,更是方便了又一定数学基础,但是计算机基础一般的朋友。
1.爬虫:
相信大部分人都用Python爬过数据,目前来说,比较流行的框架是scrapy,对爬取数据来说,简单方便了不少,只需要自己添加少量的代码,框架便可启动开始爬取,当然,还有简单地爬虫包,像requests+BeautifulSoup,对于爬取简单网页来说,也足够了:
如果你想要学好Python最好加入一个好的学习环境,可以来这个Q群,首先是629,中间是440,最后是234,这样大家学习的话就比较方便,还能够共同交流和分享资料
2.数据处理:
numpy,scipy,pandas这些包对于处理数据来说非常方便,线性代数、科学计算等,利用numpy处理起来非常方便,pandas提供的DataFrame类可以方便的处理各种类型的文件,像excel,csv等,是分析数据的利器:
3.可视化:
这里的包其实也挺多的,除了我们常用的matplotlib外,还有seaborn,pyecharts等,可以绘制出各种各样类型的图形,除了常见的线图、饼图和柱状图外,还可以绘制出地图、词云图、地理坐标系图等,美观大方,所需的代码量还少,更容易上手:
4.机器学习:
说起python机器学习,大部分人都应该scikit-learn这个包,常见的机器学习算法,像回归、分类、聚类、降维、模型选择等,这里都有现成的代码可供利用,对于这机器学习方面感兴趣的人来说,这是一个入门机器学习的好包:
5.神经网络:
说起神经网络,大部分人都应该会想起深度学习,对应的就会想到谷歌目前非常流行的深度学习框架—tensorflow,tesndorflow可被用于语音识别和图像识别等众多领域,其发展前景光明,对于这方面感兴趣的科研人员来说,是一个很不错的工具,当然,还有基于tensorflow的theano,keras等,都是学习神经网络的不错选择:
6.股票财经:
对于股票和财经比较感兴趣的朋友来说,python也提供了现成的库来获取和分析股票财经数据—tushare,tushare是一个免费、开源的python财经数据接口包,可以快速的获取到国内大部分股票数据,对于金融分析人员来说,可以说是一个利器,降低了许多任务量:
7.游戏:
Python专门为游戏开发提供了一个平台—Pygame,对于想快速开发小型游戏的用户来说,是一个很不错的选择,简单易学、容易上手,脱离了低级语言的束缚,使用起来也挺方便的:
1.网站开发。Python数据处理很在线,用它编写网站可以为大众提供优秀的服务,主要使用django和flask框架,著名的网站像知乎、YouTube就是Python写的。
2.自动化运维。Python运行在Linux系统上可以作为服务器脚本不停工作,实现对主机的自动化操作,自动登录等就是应用之一。
网络爬虫。顾名思义,从互联网上爬取信息的脚本,主要由urllib、requests等库编写,实用性很强,小编就曾写过爬取5w数据量的爬虫。在大数据风靡的时代,爬虫绝对是新秀。
3. 人工智能。AI使Python一战成名,AI的实现可以通过tensorflow库。小编认为,神经网络的核心在于激活函数、损失函数和数据,数据可以通过爬虫获得。训练时大量的数据运算又是Python的show time。
当然了,以上只是Python应用比较多的领域,别的领域和这些往往存在交集,这里不再赘述,至于Python能不能写外挂和游戏,下面小编就告诉大家:
外挂是写不了的,Python是脚本语言,不可能像易语言、C语言那样流畅自如地编写辅助;
游戏并不适合用Python开发,Python虽有pygame库,但是功能不强,游戏运行效率低下,写游戏还是要靠游戏引擎。
Python的优势有必要作为第一步去了解,Python作为面向对象的脚本语言,优势就是数据处理和挖掘,这也注定了它和AI、互联网技术的紧密联系。