2个回答
展开全部
let
y=1/x
consider
L = lim(x->∞) (1+1/x)^(x^2) / e^x
lnL
=lim(x->∞) [x^2.ln(1+1/x) -x]
=lim(y->0) [ln(1+y) -y] /y^2 (0/0)
=lim(y->0) [1/(1+y) -1] /(2y)
=lim(y->0) 1/[2(1+y)]
=1/2
=>
L = e^(1/2)
lim(n->∞) (1+1/n)^(n^2) / e^n = L = e^(1/2)
y=1/x
consider
L = lim(x->∞) (1+1/x)^(x^2) / e^x
lnL
=lim(x->∞) [x^2.ln(1+1/x) -x]
=lim(y->0) [ln(1+y) -y] /y^2 (0/0)
=lim(y->0) [1/(1+y) -1] /(2y)
=lim(y->0) 1/[2(1+y)]
=1/2
=>
L = e^(1/2)
lim(n->∞) (1+1/n)^(n^2) / e^n = L = e^(1/2)
更多追问追答
追问
Your answer is wrong.
The correct answer is e^(-1/2).
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询