![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
4个回答
2019-08-23 · 知道合伙人教育行家
关注
![](https://wyw-base.cdn.bcebos.com/pc-content/follow.gif)
展开全部
绕 x=3a 旋转,以 dy 为微元,
每一个截面都是圆环,中心是 x=3a,
所求体积就是圆环面积的积分,
圆环的外半径 =3a - [a-√(a²-y²)],
内半径=3a-y。
每一个截面都是圆环,中心是 x=3a,
所求体积就是圆环面积的积分,
圆环的外半径 =3a - [a-√(a²-y²)],
内半径=3a-y。
![](https://ecmc.bdimg.com/public03/b4cb859ca634443212c22993b0c87088.png)
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
对划线部分的解析:
用经过y轴上纵坐标为y(0<y<a)的点的平面去截题中的旋转体,易知所得截面为圆环形;
划线式子中的a-√(a²-y²)是由圆的方程(x-a)²+y²=a²解出的区域D的圆弧边上纵坐标为y的点的横坐标x的表达式(注意x-a≤0),故3a-(a-√(a²-y²))表示该点到旋转轴x=3a的距离,亦即圆环形截面的外半径;
因区域D直边的方程为y=x,故划线式子中的3a-y表示直边上纵坐标为y的点到旋转轴x=3a的距离,亦即圆环形截面的内半径;
所以式子π[3a-(a-√(a²-y²))]²-π(3a-y)²表示圆环形截面的面积,再乘以dy即得体积微元dV(这里的dV可以近似理解成以圆环形截面为底,以dy为高的扁柱体的体积).
用经过y轴上纵坐标为y(0<y<a)的点的平面去截题中的旋转体,易知所得截面为圆环形;
划线式子中的a-√(a²-y²)是由圆的方程(x-a)²+y²=a²解出的区域D的圆弧边上纵坐标为y的点的横坐标x的表达式(注意x-a≤0),故3a-(a-√(a²-y²))表示该点到旋转轴x=3a的距离,亦即圆环形截面的外半径;
因区域D直边的方程为y=x,故划线式子中的3a-y表示直边上纵坐标为y的点到旋转轴x=3a的距离,亦即圆环形截面的内半径;
所以式子π[3a-(a-√(a²-y²))]²-π(3a-y)²表示圆环形截面的面积,再乘以dy即得体积微元dV(这里的dV可以近似理解成以圆环形截面为底,以dy为高的扁柱体的体积).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询