一道计算题,谢谢
2个回答
展开全部
令t=arcsinx,则x=sint
dx=d(sint)=(cost)dt
所以∫(arcsinx)²dx
=∫t²(cost)dt
=∫t²d(sint)
=t²sint-∫sintd(t²)
=t²sint-2∫(sint)td(t)
=t²sint+2∫td(cost)
=t²sint+2(tcost-∫(cost)dt)
=t²sint+2tcost-2∫(cost)dt
=t²sint+2tcost-2sint+C
=x(arcsinx)²+2(arcsinx)(√(1-x^2))-2x+C
dx=d(sint)=(cost)dt
所以∫(arcsinx)²dx
=∫t²(cost)dt
=∫t²d(sint)
=t²sint-∫sintd(t²)
=t²sint-2∫(sint)td(t)
=t²sint+2∫td(cost)
=t²sint+2(tcost-∫(cost)dt)
=t²sint+2tcost-2∫(cost)dt
=t²sint+2tcost-2sint+C
=x(arcsinx)²+2(arcsinx)(√(1-x^2))-2x+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询