6个回答
2020-02-16
展开全部
如图所示,延长CD至点E,使得DE=DB,连接AE、BE,
因为∠ABC=∠ACB=70°,所以△ABC为等腰三角形,
可令△ABE绕点A旋转至△ACF,连接DF。
因为∠DBC=40°,∠DCB=20°,所以∠BDE=60°,
又因为DE=DB,所以△BDE为等边三角形,
则由∠ABD=30°可知AB垂直平分DE,易知△ABD≌△ABE,
因为△ACF是由△ABE旋转而来,所以△ABD≌△ABE≌△ACF,
有AD=AE=AF,DE=DB=BE=FC,∠BAD=∠BAE=∠CAF,
且∠ABD=∠ACF=30°,则∠DCF=20°,∠DBC=∠FCB=40°,
有DF∥BC,所以∠DCF=∠DCB=∠CDF=20°,
即△CDF为等腰三角形,有DE=FC=FD,易知△ADE≌△ADF,
所以∠DAF=∠DAE=2∠BAD=2∠BAE=2∠CAF,
因为在等腰△ABC中∠ABC=∠ACB=70°,则∠BAC=40°,
易算得∠DAF=∠DAE=20°,∠BAD=∠BAE=∠CAF=10°,
所以∠DAC=∠DAF+∠CAF=20°+10°=30°。
追问
👍
展开全部
要证明这一题主要是运用角的转化,因为∠DAC=2∠BAC,所以我们可以把所求角转化成n∠BAC。
证明:因为AB=AC=AD,
所以,在三角形ABD中,∠ADB=ABD=(180-∠BAD)/2=(180-∠BAC-∠DAC)/2=(180-3∠BAC)/2
在三角形ACD中,∠ADC=∠ACD=(180-∠DAC)/2=(180-2∠BAC)/2
在三角形ABC中,∠ABC=∠ACB=(180-∠BAC)/2
在三角形BCD中,∠BDC+∠DBC=180-∠ACB-∠ACD==3∠BAC/2
又因为,∠ABD+∠DBC=∠ACB
所以,∠ABC=∠ACB-∠ABD=(180-∠BAC)/2-(180-3∠BAC)/2=∠BAC
所以,∠BDC=∠BAC/2
即,∠DBC=2∠BDC,得证
证明:因为AB=AC=AD,
所以,在三角形ABD中,∠ADB=ABD=(180-∠BAD)/2=(180-∠BAC-∠DAC)/2=(180-3∠BAC)/2
在三角形ACD中,∠ADC=∠ACD=(180-∠DAC)/2=(180-2∠BAC)/2
在三角形ABC中,∠ABC=∠ACB=(180-∠BAC)/2
在三角形BCD中,∠BDC+∠DBC=180-∠ACB-∠ACD==3∠BAC/2
又因为,∠ABD+∠DBC=∠ACB
所以,∠ABC=∠ACB-∠ABD=(180-∠BAC)/2-(180-3∠BAC)/2=∠BAC
所以,∠BDC=∠BAC/2
即,∠DBC=2∠BDC,得证
追问
?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
应该是30度,是不是少条件啊,
由题意可知这个角肯定小于40度。
所以可以进行大胆猜测。
由题意可知这个角肯定小于40度。
所以可以进行大胆猜测。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询