求微分方程的通解第二小题急 5
1个回答
展开全部
(2) 原微分方程即
e^x(e^y-1)dx + e^y(e^x+1)dy = 0
当 y ≠ 0 时,两边同除以 (e^y-1)(e^x+1), 得
e^xdx/(e^x+1) + e^ydy/(e^y-1) = 0,
d(e^y-1)/(e^y-1) = - d(e^x+1)/(e^x+1)
ln(e^y-1) = -ln(e^x+1) + lnC
ln(e^y-1) + ln(e^x+1) = lnC
通解是 (e^y-1)(e^x+1) = C.
e^x(e^y-1)dx + e^y(e^x+1)dy = 0
当 y ≠ 0 时,两边同除以 (e^y-1)(e^x+1), 得
e^xdx/(e^x+1) + e^ydy/(e^y-1) = 0,
d(e^y-1)/(e^y-1) = - d(e^x+1)/(e^x+1)
ln(e^y-1) = -ln(e^x+1) + lnC
ln(e^y-1) + ln(e^x+1) = lnC
通解是 (e^y-1)(e^x+1) = C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询