矩阵!!!

 我来答
爱烧怪季1j
2018-11-30 · TA获得超过2127个赞
知道大有可为答主
回答量:3597
采纳率:47%
帮助的人:577万
展开全部
1. A^2=A,即是A^2-A=0, 即A(A-E)=0, 所以R(A)+(A-E)小于或等于n,
又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,
于是R(A)+(A-E)=n.
2. 由A(A-E)=0可知A-E的每一列都是Ax=0的解,类似地可以知道,A的每一列也都是(A-E)x=0的解.
3. A的特征值只能是1或0. 证明如下:设λ是A的任意一特征值,α是其应对的特征向量,则有
Aα=λα, 于是(A^2-A)α=(λ^2-λ)α=0, 因为α不是零向量,于是只能有λ^2-λ=0,所以λ=1或λ=0
4.矩阵A一定可以对角化. 因为A-E的每一非零列都是Ax=0的解,所以A-E的每一个非零列都是λ=0的特征向量,同理A 的每一个非零列都是λ=1的特征向量,再由R(A)+(A-E)=n可知矩阵A有n个线性无关的特征向量,所以A可以对角化.

暂时只能想到 这些了,希望对你有所帮助.
sjh5551
高粉答主

2018-11-30 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:9270万
展开全部
P^(-1) =
[ 3 -2]
[-4 3]
M = PDP^(-1)
M^12 = PDP^(-1)PDP^(-1)PDP^(-1)......PDP^(-1)PDP^(-1)
= PD^12P^(-1) =
[9·2^(-12)-2^15, -3·2^(-11)+3·2^13]
[3·2^(-10)-3·2^14, -2^(-9)+9·2^12]
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式