求解谢谢高数?
2个回答
上海桦明教育科技
2024-12-15 广告
2024-12-15 广告
考研通常是在大四进行。大学生一般会选择在大四上学期参加12月份的全国硕士研究生统一招生考试,如果顺利通过考试,次年9月即可入读研究生。当然,也有部分同学会选择在大三期间开始备考,提前为考研做好知识和心理准备。但这并不意味着他们能在大三就参加...
点击进入详情页
本回答由上海桦明教育科技提供
展开全部
(7)
y=f[(2x-1)/(2x+1)]
dy/dx
=f'[(2x-1)/(2x+1)] . [4/(2x+1)^2]
=4arctan√[(2x-1)/(2x+1)] /(2x+1)^2
dy/dx|x=0
=4(-π/4)
=-π
(8)
x+xsin(x+y) +e^y = e^(π/2)
x=0
e^[y(0)] = e^(π/2)
y(0) =π/2
(x,y)=(0, π/2)
x+xsin(x+y) +e^y = e^(π/2)
dx +sin(x+y)dx + xcos(x+y).(dx+dy) + e^y .dy =0
[xcos(x+y) +e^y]dy = -[1+sin(x+y) + xcos(x+y) ] dx
dy ={-[1+sin(x+y) + xcos(x+y) ] /[xcos(x+y) +e^y] }dx
dy| x=0
=dy | (x,y)=(0,π/2)
={-[1+sin(π/2) + 0 ] /[0 +e^(π/2) ] }dx
=-2.e^(-π/2) dx
y=f[(2x-1)/(2x+1)]
dy/dx
=f'[(2x-1)/(2x+1)] . [4/(2x+1)^2]
=4arctan√[(2x-1)/(2x+1)] /(2x+1)^2
dy/dx|x=0
=4(-π/4)
=-π
(8)
x+xsin(x+y) +e^y = e^(π/2)
x=0
e^[y(0)] = e^(π/2)
y(0) =π/2
(x,y)=(0, π/2)
x+xsin(x+y) +e^y = e^(π/2)
dx +sin(x+y)dx + xcos(x+y).(dx+dy) + e^y .dy =0
[xcos(x+y) +e^y]dy = -[1+sin(x+y) + xcos(x+y) ] dx
dy ={-[1+sin(x+y) + xcos(x+y) ] /[xcos(x+y) +e^y] }dx
dy| x=0
=dy | (x,y)=(0,π/2)
={-[1+sin(π/2) + 0 ] /[0 +e^(π/2) ] }dx
=-2.e^(-π/2) dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询