【求】用洛必达法则求极限
1个回答
展开全部
0/0型,可考虑用洛必达法则,对于分子分母同时对x求导,此时观察分子中存在幂指函数,考虑用取对数法求导。得对于(e)'=0,幂指函数[(1+x)^(1/x)]'用取对数法求导,假设y=(1+x)^(1/x),
则lny=(1/x)ln(1+x)
y'/y=(-1/x^2)ln(1+x)+1/[x(1+x)]
y'=[(1+x)^(1/x)][(-1/x^2)ln(1+x)+1/[x(1+x)]]
分子的导数就等于1
所以该极限值等于lim
y'=-e
则lny=(1/x)ln(1+x)
y'/y=(-1/x^2)ln(1+x)+1/[x(1+x)]
y'=[(1+x)^(1/x)][(-1/x^2)ln(1+x)+1/[x(1+x)]]
分子的导数就等于1
所以该极限值等于lim
y'=-e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询