设二维随机变量(X,Y)的概率密度为f(x,y)= e的-y次方,0<x<y 0, 其他
1个回答
展开全部
1,求随机变量X的密度fX(x),边沿分布,积分不好写,结果是
fX(x)={e^(-y)
0<x<y
{0
其他
2.概率密度函数f(x,y)在直线x=0,y=x,y=-x+1所围的三角形区域的二重积分,结果是1+e^(-1)-2e^(-1/2)
3.条件分布,应该写成
fX(x|Y=y)而非fξ(x|η=y),表示Y=y的条件分布,按题目意思,此处y理解为某一常数,则
fX(x|Y=y)=f(x,y)/fY(y)=e^(-y)/ye^(-y)=1/y
fY(y)=ye^(-y)随机变量Y的边沿分布
4.条件概率,似应写成P(X<2|Y<1),也是积分计算
P(X<2|Y<1),=P{X<2,Y<1}/P(Y<1)
P{X<2,Y<1}为f(x,y)在直线x=2,y=1,y=x所围区域积分,P(Y<1)为f(x,y)在直线y=x,y=1所围区域积分,在本题情况,两个区域的有效部分(即不为零部分)恰好相等,故积分值为1。概率意义是,随机点分布区域为0<x<y,有Y<1,则必有X<2矣。
fX(x)={e^(-y)
0<x<y
{0
其他
2.概率密度函数f(x,y)在直线x=0,y=x,y=-x+1所围的三角形区域的二重积分,结果是1+e^(-1)-2e^(-1/2)
3.条件分布,应该写成
fX(x|Y=y)而非fξ(x|η=y),表示Y=y的条件分布,按题目意思,此处y理解为某一常数,则
fX(x|Y=y)=f(x,y)/fY(y)=e^(-y)/ye^(-y)=1/y
fY(y)=ye^(-y)随机变量Y的边沿分布
4.条件概率,似应写成P(X<2|Y<1),也是积分计算
P(X<2|Y<1),=P{X<2,Y<1}/P(Y<1)
P{X<2,Y<1}为f(x,y)在直线x=2,y=1,y=x所围区域积分,P(Y<1)为f(x,y)在直线y=x,y=1所围区域积分,在本题情况,两个区域的有效部分(即不为零部分)恰好相等,故积分值为1。概率意义是,随机点分布区域为0<x<y,有Y<1,则必有X<2矣。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询