谁知道反三角函数的转换公式?
2个回答
展开全部
反三角函数公式:
arcsin(-x)=-arcsinx
arccos(-x)=∏-arccosx
arctan(-x)=-arctanx
arccot(-x)=∏-arccotx
arcsinx+arccosx=∏/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x
当x∈〔0,∏〕,arccos(cosx)=x
x∈(—∏/2,∏/2),arctan(tanx)=x
x∈(0,∏),arccot(cotx)=x
x〉0,arctanx=arctan1/x,arccotx类似
若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)
同角三角函数的基本关系式
倒数关系:
商的关系:
平方关系:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式
三角函数的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式
三角函数的积化和差公式
α+β
α-β
sinα+sinβ=2sin—--·cos—-—
2
2
α+β
α-β
sinα-sinβ=2cos—--·sin—-—
2
2
α+β
α-β
cosα+cosβ=2cos—--·cos—-—
2
2
α+β
α-β
cosα-cosβ=-2sin—--·sin—-—
2
2
1
sinα
·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα
·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα
·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα
·sinβ=-
-[cos(α+β)-cos(α-β)]
2
arcsin(-x)=-arcsinx
arccos(-x)=∏-arccosx
arctan(-x)=-arctanx
arccot(-x)=∏-arccotx
arcsinx+arccosx=∏/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x
当x∈〔0,∏〕,arccos(cosx)=x
x∈(—∏/2,∏/2),arctan(tanx)=x
x∈(0,∏),arccot(cotx)=x
x〉0,arctanx=arctan1/x,arccotx类似
若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)
同角三角函数的基本关系式
倒数关系:
商的关系:
平方关系:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式
三角函数的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式
三角函数的积化和差公式
α+β
α-β
sinα+sinβ=2sin—--·cos—-—
2
2
α+β
α-β
sinα-sinβ=2cos—--·sin—-—
2
2
α+β
α-β
cosα+cosβ=2cos—--·cos—-—
2
2
α+β
α-β
cosα-cosβ=-2sin—--·sin—-—
2
2
1
sinα
·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα
·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα
·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα
·sinβ=-
-[cos(α+β)-cos(α-β)]
2
武义菲亚伏电子有限公司
2023-06-12 广告
2023-06-12 广告
绝缘子控件是指:“一种能够在架空输电线路中起到重要作用的特殊绝缘控件,能够在架空输电线路中起到重要作用。”绝缘子的作用是支持和固定母线与带电导体,并使带电导体间或导体与大地之间有足够的距离和绝缘。绝缘子应具有足够的电气绝缘强度和耐潮湿性能。...
点击进入详情页
本回答由武义菲亚伏电子有限公司提供
展开全部
反三角函数是一种基本初等函数,常见公式主要有:arcsin(-x)=-arcsinx、arccos(-x)=π-arccosx、arctan(-x)=-arctanx、arccot(-x)=π-arccotx等。
反三角函数公式有哪些
反三角函数常见公式
1、arcsin(-x)=-arcsinx
2、arccos(-x)=π-arccosx
3、arctan(-x)=-arctanx
4、arccot(-x)=π-arccotx
5、arcsinx+arccosx=π/2=arctanx+arccotx
6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x
8、当x∈〔0,π〕,arccos(cosx)=x
9、x∈(—π/2,π/2),arctan(tanx)=x
10、x∈(0,π),arccot(cotx)=x
11、x〉0,arctanx=arctan1/x,
12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)
反三角函数公式有哪些
反三角函数常见公式
1、arcsin(-x)=-arcsinx
2、arccos(-x)=π-arccosx
3、arctan(-x)=-arctanx
4、arccot(-x)=π-arccotx
5、arcsinx+arccosx=π/2=arctanx+arccotx
6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x
8、当x∈〔0,π〕,arccos(cosx)=x
9、x∈(—π/2,π/2),arctan(tanx)=x
10、x∈(0,π),arccot(cotx)=x
11、x〉0,arctanx=arctan1/x,
12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |