求数列{n!/n^n}的极限

 我来答
茹翊神谕者

2021-06-29 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1598万
展开全部

简单计算一下即可,答案如图所示

蒙清竹仙衣
2020-01-29 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:31%
帮助的人:987万
展开全部
不知道你知不知道Stirling公式:当n→+∞时,n!~√(2π)n^(n+1/2)e^(-n)。这个可以是通过设bn=n!/[√(2π)n^(n+1/2)e^(-n)],当n→+∞时,bn→√(2π)来证明的。可以参考《数学分析》。
所以,极限lim(n!/n^n)=lim[√(2π)n^(n+1/2)e^(-n)/n^n]=lim√(2πn)/e^n
这是∞/∞的形式,利用L'Hospital法则,对分子、分别分别求导,有
√(2πn)/e^n

√(2π)/[2√π*e^n]
而当n→+∞时,lim{√(2π)/[2√π*e^n]}=0
所以,lim(n!/n^n)=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
善玉兰柯珍
2019-10-24 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:1053万
展开全部
n!/n^n>0
n!/n^n≤[(1/n+2/n+...+n/n)/n]^n=(1+1/n)^n/2^n
上式用了均值不等式.
显然能用挤夹原理证明这个极限为0.
对n≥3时,n!/n^n<1/n是对的,没注意到这么简单。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式