微积分中的d是什么含义啊?
1675年莱布尼兹分别引入「dx」及「dy」以表示x和y的微分(differentials),始见于他在1684年出版的书中,这符号一直沿用至今。
微分符号d取英文differential,differentiation的首个字母(difference有差距,差额的意思),其中与微分概念及符号d相关的英文单词有divide,decrease,delta等.另外,符号D又叫微分算子。
扩展资料:
一、微积分产生
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
二、积分相关
1、定积分和不定积分
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x)+C]'=f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,而牛顿和莱布尼茨则使两者产生了紧密的联系(详见牛顿-莱布尼茨公式)。
2、常微分方程与偏微分方程
含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。
参考资料来源:百度百科-微分符号
参考资料来源:百度百科-微积分
搞清两个概念就能理解d的含义了。
1、增量的概念:
Δx = x2 - x1,Δy = y2 - y1
这里的Δ就是增量的意思,只要是后面的量减前面的量,无论正负都叫增量。
2、无限小的概念:
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,
x与a的差值无限趋向于0,我们就说a是x的极限。
这个差值,我们称它为“无穷小”,它是一个越来越小的过程,一个无限趋
向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。
3、Δ一方面表示增量的概念,如果x1与x2差距很小,这个小是有限的小。只要
写得出来,无论多少位小数点,只要你写得出,只要你的笔一停,都是有限的小。
当x1与x2的差距在无止境的减小,无止境的靠近,在靠近的过程中,x1与x2
的差距无止境的趋近于0。这时我们写成dx,也就是说,Δx是有限小的量,
dx是无限小的量。
4、d的来源,本来是 difference = 差距。当此差距无止境的趋向于0时,演变
为 differentiation, 就变成了无限小的意思,称为“微分”。
“微分”是一个过程,是无止境的“分割”,无止境的“区分”的过程。
这方面的细细斟酌是非常值得的,要全部写出,就是一本《数学分析》,也就是一本厚厚的《微积分》了。楼主若想仔细研究,有任何问题,请Hi我,我为你详细解释。